This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | ||
| ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| ornglmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | ||
| ornglmullt.d | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| ornglmullt.5 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | ||
| ornglmullt.6 | ⊢ ( 𝜑 → 0 < 𝑍 ) | ||
| Assertion | ornglmullt | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) < ( 𝑍 · 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | |
| 5 | ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | ornglmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | |
| 9 | ornglmullt.d | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 10 | ornglmullt.5 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | |
| 11 | ornglmullt.6 | ⊢ ( 𝜑 → 0 < 𝑍 ) | |
| 12 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 13 | 12 8 | pltle | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 15 | 4 5 6 10 14 | syl31anc | ⊢ ( 𝜑 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 16 | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 19 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 | 12 8 | pltle | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ( le ‘ 𝑅 ) 𝑍 ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 23 | 4 20 7 11 22 | syl31anc | ⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 24 | 1 2 3 4 5 6 7 12 15 23 | ornglmulle | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ( le ‘ 𝑅 ) ( 𝑍 · 𝑌 ) ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) | |
| 26 | 25 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) ) |
| 27 | 8 | pltne | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ≠ 𝑍 ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ≠ 𝑍 ) |
| 29 | 4 20 7 11 28 | syl31anc | ⊢ ( 𝜑 → 0 ≠ 𝑍 ) |
| 30 | 29 | necomd | ⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
| 31 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 32 | 1 31 3 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑍 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) ) |
| 33 | 32 | biimpar | ⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 34 | 9 7 30 33 | syl12anc | ⊢ ( 𝜑 → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 35 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 36 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 37 | 31 35 2 36 | unitlinv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) = ( 1r ‘ 𝑅 ) ) |
| 38 | 17 34 37 | syl2anc | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) = ( 1r ‘ 𝑅 ) ) |
| 39 | 38 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
| 40 | 31 35 1 | ringinvcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 41 | 17 34 40 | syl2anc | ⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 42 | 1 2 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) ) |
| 43 | 17 41 7 5 42 | syl13anc | ⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) ) |
| 44 | 1 2 36 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 45 | 17 5 44 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
| 46 | 39 43 45 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) = 𝑋 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) = 𝑋 ) |
| 48 | 38 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑌 ) = ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
| 49 | 1 2 | ringass | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) ) |
| 50 | 17 41 7 6 49 | syl13anc | ⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) ) |
| 51 | 1 2 36 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 52 | 17 6 51 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
| 53 | 48 50 52 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) = 𝑌 ) |
| 54 | 53 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) = 𝑌 ) |
| 55 | 26 47 54 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → 𝑋 = 𝑌 ) |
| 56 | 8 | pltne | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ≠ 𝑌 ) ) |
| 57 | 56 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 58 | 4 5 6 10 57 | syl31anc | ⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → 𝑋 ≠ 𝑌 ) |
| 60 | 59 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) → ¬ 𝑋 = 𝑌 ) |
| 61 | 55 60 | pm2.65da | ⊢ ( 𝜑 → ¬ ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) |
| 62 | 61 | neqned | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ≠ ( 𝑍 · 𝑌 ) ) |
| 63 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑍 · 𝑋 ) ∈ 𝐵 ) |
| 64 | 17 7 5 63 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) ∈ 𝐵 ) |
| 65 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 · 𝑌 ) ∈ 𝐵 ) |
| 66 | 17 7 6 65 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 · 𝑌 ) ∈ 𝐵 ) |
| 67 | 12 8 | pltval | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑍 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑍 · 𝑌 ) ∈ 𝐵 ) → ( ( 𝑍 · 𝑋 ) < ( 𝑍 · 𝑌 ) ↔ ( ( 𝑍 · 𝑋 ) ( le ‘ 𝑅 ) ( 𝑍 · 𝑌 ) ∧ ( 𝑍 · 𝑋 ) ≠ ( 𝑍 · 𝑌 ) ) ) ) |
| 68 | 4 64 66 67 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑍 · 𝑋 ) < ( 𝑍 · 𝑌 ) ↔ ( ( 𝑍 · 𝑋 ) ( le ‘ 𝑅 ) ( 𝑍 · 𝑌 ) ∧ ( 𝑍 · 𝑋 ) ≠ ( 𝑍 · 𝑌 ) ) ) ) |
| 69 | 24 62 68 | mpbir2and | ⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) < ( 𝑍 · 𝑌 ) ) |