This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Less-than relation. ( df-pss analog.) (Contributed by NM, 12-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pltval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| pltval.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pltval | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pltval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | pltval.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 3 | 1 2 | pltfval | ⊢ ( 𝐾 ∈ 𝐴 → < = ( ≤ ∖ I ) ) |
| 4 | 3 | breqd | ⊢ ( 𝐾 ∈ 𝐴 → ( 𝑋 < 𝑌 ↔ 𝑋 ( ≤ ∖ I ) 𝑌 ) ) |
| 5 | brdif | ⊢ ( 𝑋 ( ≤ ∖ I ) 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌 ) ) | |
| 6 | ideqg | ⊢ ( 𝑌 ∈ 𝐶 → ( 𝑋 I 𝑌 ↔ 𝑋 = 𝑌 ) ) | |
| 7 | 6 | necon3bbid | ⊢ ( 𝑌 ∈ 𝐶 → ( ¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( ¬ 𝑋 I 𝑌 ↔ 𝑋 ≠ 𝑌 ) ) |
| 9 | 8 | anbi2d | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( ( 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 I 𝑌 ) ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 | 5 9 | bitrid | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 ( ≤ ∖ I ) 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 11 | 4 10 | sylan9bb | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 12 | 11 | 3impb | ⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐶 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |