This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | ||
| ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| ornglmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | ||
| ornglmullt.d | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | ||
| ornglmullt.5 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | ||
| ornglmullt.6 | ⊢ ( 𝜑 → 0 < 𝑍 ) | ||
| Assertion | orngrmullt | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ornglmullt.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ornglmullt.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | ornglmullt.1 | ⊢ ( 𝜑 → 𝑅 ∈ oRing ) | |
| 5 | ornglmullt.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | ornglmullt.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | ornglmullt.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | ornglmullt.l | ⊢ < = ( lt ‘ 𝑅 ) | |
| 9 | ornglmullt.d | ⊢ ( 𝜑 → 𝑅 ∈ DivRing ) | |
| 10 | ornglmullt.5 | ⊢ ( 𝜑 → 𝑋 < 𝑌 ) | |
| 11 | ornglmullt.6 | ⊢ ( 𝜑 → 0 < 𝑍 ) | |
| 12 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 13 | 12 8 | pltle | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) ) |
| 14 | 13 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 15 | 4 5 6 10 14 | syl31anc | ⊢ ( 𝜑 → 𝑋 ( le ‘ 𝑅 ) 𝑌 ) |
| 16 | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 18 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 19 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 21 | 12 8 | pltle | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ( le ‘ 𝑅 ) 𝑍 ) ) |
| 22 | 21 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 23 | 4 20 7 11 22 | syl31anc | ⊢ ( 𝜑 → 0 ( le ‘ 𝑅 ) 𝑍 ) |
| 24 | 1 2 3 4 5 6 7 12 15 23 | orngrmulle | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) | |
| 26 | 25 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) ) |
| 27 | 8 | pltne | ⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 0 < 𝑍 → 0 ≠ 𝑍 ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 0 < 𝑍 ) → 0 ≠ 𝑍 ) |
| 29 | 4 20 7 11 28 | syl31anc | ⊢ ( 𝜑 → 0 ≠ 𝑍 ) |
| 30 | 29 | necomd | ⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
| 31 | eqid | ⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) | |
| 32 | 1 31 3 | drngunit | ⊢ ( 𝑅 ∈ DivRing → ( 𝑍 ∈ ( Unit ‘ 𝑅 ) ↔ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) ) |
| 33 | 32 | biimpar | ⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑍 ≠ 0 ) ) → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 34 | 9 7 30 33 | syl12anc | ⊢ ( 𝜑 → 𝑍 ∈ ( Unit ‘ 𝑅 ) ) |
| 35 | eqid | ⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) | |
| 36 | 1 31 35 2 | dvrcan3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 37 | 17 5 34 36 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑋 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
| 39 | 1 31 35 2 | dvrcan3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 40 | 17 6 34 39 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 41 | 40 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ( ( 𝑌 · 𝑍 ) ( /r ‘ 𝑅 ) 𝑍 ) = 𝑌 ) |
| 42 | 26 38 41 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → 𝑋 = 𝑌 ) |
| 43 | 8 | pltne | ⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 → 𝑋 ≠ 𝑌 ) ) |
| 44 | 43 | imp | ⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 45 | 4 5 6 10 44 | syl31anc | ⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → 𝑋 ≠ 𝑌 ) |
| 47 | 46 | neneqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) → ¬ 𝑋 = 𝑌 ) |
| 48 | 42 47 | pm2.65da | ⊢ ( 𝜑 → ¬ ( 𝑋 · 𝑍 ) = ( 𝑌 · 𝑍 ) ) |
| 49 | 48 | neqned | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) |
| 50 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 51 | 17 5 7 50 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) ∈ 𝐵 ) |
| 52 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 53 | 17 6 7 52 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 · 𝑍 ) ∈ 𝐵 ) |
| 54 | 12 8 | pltval | ⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 · 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 · 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ↔ ( ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ∧ ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) ) ) |
| 55 | 4 51 53 54 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ↔ ( ( 𝑋 · 𝑍 ) ( le ‘ 𝑅 ) ( 𝑌 · 𝑍 ) ∧ ( 𝑋 · 𝑍 ) ≠ ( 𝑌 · 𝑍 ) ) ) ) |
| 56 | 24 49 55 | mpbir2and | ⊢ ( 𝜑 → ( 𝑋 · 𝑍 ) < ( 𝑌 · 𝑍 ) ) |