This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ornglmullt.b | |- B = ( Base ` R ) |
|
| ornglmullt.t | |- .x. = ( .r ` R ) |
||
| ornglmullt.0 | |- .0. = ( 0g ` R ) |
||
| ornglmullt.1 | |- ( ph -> R e. oRing ) |
||
| ornglmullt.2 | |- ( ph -> X e. B ) |
||
| ornglmullt.3 | |- ( ph -> Y e. B ) |
||
| ornglmullt.4 | |- ( ph -> Z e. B ) |
||
| ornglmullt.l | |- .< = ( lt ` R ) |
||
| ornglmullt.d | |- ( ph -> R e. DivRing ) |
||
| ornglmullt.5 | |- ( ph -> X .< Y ) |
||
| ornglmullt.6 | |- ( ph -> .0. .< Z ) |
||
| Assertion | ornglmullt | |- ( ph -> ( Z .x. X ) .< ( Z .x. Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ornglmullt.b | |- B = ( Base ` R ) |
|
| 2 | ornglmullt.t | |- .x. = ( .r ` R ) |
|
| 3 | ornglmullt.0 | |- .0. = ( 0g ` R ) |
|
| 4 | ornglmullt.1 | |- ( ph -> R e. oRing ) |
|
| 5 | ornglmullt.2 | |- ( ph -> X e. B ) |
|
| 6 | ornglmullt.3 | |- ( ph -> Y e. B ) |
|
| 7 | ornglmullt.4 | |- ( ph -> Z e. B ) |
|
| 8 | ornglmullt.l | |- .< = ( lt ` R ) |
|
| 9 | ornglmullt.d | |- ( ph -> R e. DivRing ) |
|
| 10 | ornglmullt.5 | |- ( ph -> X .< Y ) |
|
| 11 | ornglmullt.6 | |- ( ph -> .0. .< Z ) |
|
| 12 | eqid | |- ( le ` R ) = ( le ` R ) |
|
| 13 | 12 8 | pltle | |- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X ( le ` R ) Y ) ) |
| 14 | 13 | imp | |- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X ( le ` R ) Y ) |
| 15 | 4 5 6 10 14 | syl31anc | |- ( ph -> X ( le ` R ) Y ) |
| 16 | orngring | |- ( R e. oRing -> R e. Ring ) |
|
| 17 | 4 16 | syl | |- ( ph -> R e. Ring ) |
| 18 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 19 | 1 3 | grpidcl | |- ( R e. Grp -> .0. e. B ) |
| 20 | 17 18 19 | 3syl | |- ( ph -> .0. e. B ) |
| 21 | 12 8 | pltle | |- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. ( le ` R ) Z ) ) |
| 22 | 21 | imp | |- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. ( le ` R ) Z ) |
| 23 | 4 20 7 11 22 | syl31anc | |- ( ph -> .0. ( le ` R ) Z ) |
| 24 | 1 2 3 4 5 6 7 12 15 23 | ornglmulle | |- ( ph -> ( Z .x. X ) ( le ` R ) ( Z .x. Y ) ) |
| 25 | simpr | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( Z .x. X ) = ( Z .x. Y ) ) |
|
| 26 | 25 | oveq2d | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 27 | 8 | pltne | |- ( ( R e. oRing /\ .0. e. B /\ Z e. B ) -> ( .0. .< Z -> .0. =/= Z ) ) |
| 28 | 27 | imp | |- ( ( ( R e. oRing /\ .0. e. B /\ Z e. B ) /\ .0. .< Z ) -> .0. =/= Z ) |
| 29 | 4 20 7 11 28 | syl31anc | |- ( ph -> .0. =/= Z ) |
| 30 | 29 | necomd | |- ( ph -> Z =/= .0. ) |
| 31 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 32 | 1 31 3 | drngunit | |- ( R e. DivRing -> ( Z e. ( Unit ` R ) <-> ( Z e. B /\ Z =/= .0. ) ) ) |
| 33 | 32 | biimpar | |- ( ( R e. DivRing /\ ( Z e. B /\ Z =/= .0. ) ) -> Z e. ( Unit ` R ) ) |
| 34 | 9 7 30 33 | syl12anc | |- ( ph -> Z e. ( Unit ` R ) ) |
| 35 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 36 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 37 | 31 35 2 36 | unitlinv | |- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
| 38 | 17 34 37 | syl2anc | |- ( ph -> ( ( ( invr ` R ) ` Z ) .x. Z ) = ( 1r ` R ) ) |
| 39 | 38 | oveq1d | |- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( 1r ` R ) .x. X ) ) |
| 40 | 31 35 1 | ringinvcl | |- ( ( R e. Ring /\ Z e. ( Unit ` R ) ) -> ( ( invr ` R ) ` Z ) e. B ) |
| 41 | 17 34 40 | syl2anc | |- ( ph -> ( ( invr ` R ) ` Z ) e. B ) |
| 42 | 1 2 | ringass | |- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ X e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
| 43 | 17 41 7 5 42 | syl13anc | |- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. X ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) ) |
| 44 | 1 2 36 | ringlidm | |- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) .x. X ) = X ) |
| 45 | 17 5 44 | syl2anc | |- ( ph -> ( ( 1r ` R ) .x. X ) = X ) |
| 46 | 39 43 45 | 3eqtr3d | |- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
| 47 | 46 | adantr | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. X ) ) = X ) |
| 48 | 38 | oveq1d | |- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( 1r ` R ) .x. Y ) ) |
| 49 | 1 2 | ringass | |- ( ( R e. Ring /\ ( ( ( invr ` R ) ` Z ) e. B /\ Z e. B /\ Y e. B ) ) -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 50 | 17 41 7 6 49 | syl13anc | |- ( ph -> ( ( ( ( invr ` R ) ` Z ) .x. Z ) .x. Y ) = ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) ) |
| 51 | 1 2 36 | ringlidm | |- ( ( R e. Ring /\ Y e. B ) -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 52 | 17 6 51 | syl2anc | |- ( ph -> ( ( 1r ` R ) .x. Y ) = Y ) |
| 53 | 48 50 52 | 3eqtr3d | |- ( ph -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
| 54 | 53 | adantr | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> ( ( ( invr ` R ) ` Z ) .x. ( Z .x. Y ) ) = Y ) |
| 55 | 26 47 54 | 3eqtr3d | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X = Y ) |
| 56 | 8 | pltne | |- ( ( R e. oRing /\ X e. B /\ Y e. B ) -> ( X .< Y -> X =/= Y ) ) |
| 57 | 56 | imp | |- ( ( ( R e. oRing /\ X e. B /\ Y e. B ) /\ X .< Y ) -> X =/= Y ) |
| 58 | 4 5 6 10 57 | syl31anc | |- ( ph -> X =/= Y ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> X =/= Y ) |
| 60 | 59 | neneqd | |- ( ( ph /\ ( Z .x. X ) = ( Z .x. Y ) ) -> -. X = Y ) |
| 61 | 55 60 | pm2.65da | |- ( ph -> -. ( Z .x. X ) = ( Z .x. Y ) ) |
| 62 | 61 | neqned | |- ( ph -> ( Z .x. X ) =/= ( Z .x. Y ) ) |
| 63 | 1 2 | ringcl | |- ( ( R e. Ring /\ Z e. B /\ X e. B ) -> ( Z .x. X ) e. B ) |
| 64 | 17 7 5 63 | syl3anc | |- ( ph -> ( Z .x. X ) e. B ) |
| 65 | 1 2 | ringcl | |- ( ( R e. Ring /\ Z e. B /\ Y e. B ) -> ( Z .x. Y ) e. B ) |
| 66 | 17 7 6 65 | syl3anc | |- ( ph -> ( Z .x. Y ) e. B ) |
| 67 | 12 8 | pltval | |- ( ( R e. oRing /\ ( Z .x. X ) e. B /\ ( Z .x. Y ) e. B ) -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
| 68 | 4 64 66 67 | syl3anc | |- ( ph -> ( ( Z .x. X ) .< ( Z .x. Y ) <-> ( ( Z .x. X ) ( le ` R ) ( Z .x. Y ) /\ ( Z .x. X ) =/= ( Z .x. Y ) ) ) ) |
| 69 | 24 62 68 | mpbir2and | |- ( ph -> ( Z .x. X ) .< ( Z .x. Y ) ) |