This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009) (Proof shortened by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordiso | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 ↔ ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resiexg | ⊢ ( 𝐴 ∈ On → ( I ↾ 𝐴 ) ∈ V ) | |
| 2 | isoid | ⊢ ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) | |
| 3 | isoeq1 | ⊢ ( 𝑓 = ( I ↾ 𝐴 ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) ) ) | |
| 4 | 3 | spcegv | ⊢ ( ( I ↾ 𝐴 ) ∈ V → ( ( I ↾ 𝐴 ) Isom E , E ( 𝐴 , 𝐴 ) → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) ) |
| 5 | 1 2 4 | mpisyl | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ) |
| 7 | isoeq5 | ⊢ ( 𝐴 = 𝐵 → ( 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) | |
| 8 | 7 | exbidv | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐴 ) ↔ ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
| 9 | 6 8 | syl5ibcom | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 → ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |
| 10 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 11 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 12 | ordiso2 | ⊢ ( ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ∧ Ord 𝐴 ∧ Ord 𝐵 ) → 𝐴 = 𝐵 ) | |
| 13 | 12 | 3coml | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ∧ 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) → 𝐴 = 𝐵 ) |
| 14 | 13 | 3expia | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 15 | 10 11 14 | syl2an | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 16 | 15 | exlimdv | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 17 | 9 16 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 = 𝐵 ↔ ∃ 𝑓 𝑓 Isom E , E ( 𝐴 , 𝐵 ) ) ) |