This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize ordiso to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordiso2 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A C_ On ) |
| 3 | 2 | sseld | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> x e. On ) ) |
| 4 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 5 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 6 | id | |- ( x = y -> x = y ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = y -> ( ( F ` x ) = x <-> ( F ` y ) = y ) ) |
| 8 | 4 7 | imbi12d | |- ( x = y -> ( ( x e. A -> ( F ` x ) = x ) <-> ( y e. A -> ( F ` y ) = y ) ) ) |
| 9 | 8 | imbi2d | |- ( x = y -> ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) <-> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) ) ) |
| 10 | r19.21v | |- ( A. y e. x ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) <-> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) ) |
|
| 11 | ordelss | |- ( ( Ord A /\ x e. A ) -> x C_ A ) |
|
| 12 | 11 | 3ad2antl2 | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> x C_ A ) |
| 13 | 12 | sselda | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) /\ y e. x ) -> y e. A ) |
| 14 | pm5.5 | |- ( y e. A -> ( ( y e. A -> ( F ` y ) = y ) <-> ( F ` y ) = y ) ) |
|
| 15 | 13 14 | syl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) /\ y e. x ) -> ( ( y e. A -> ( F ` y ) = y ) <-> ( F ` y ) = y ) ) |
| 16 | 15 | ralbidva | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) <-> A. y e. x ( F ` y ) = y ) ) |
| 17 | isof1o | |- ( F Isom _E , _E ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 18 | 17 | 3ad2ant1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F : A -1-1-onto-> B ) |
| 19 | 18 | ad2antrr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F : A -1-1-onto-> B ) |
| 20 | simpll3 | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> Ord B ) |
|
| 21 | simpr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. ( F ` x ) ) |
|
| 22 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 23 | 17 22 | syl | |- ( F Isom _E , _E ( A , B ) -> F : A --> B ) |
| 24 | 23 | 3ad2ant1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F : A --> B ) |
| 25 | 24 | ad2antrr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F : A --> B ) |
| 26 | simplrl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> x e. A ) |
|
| 27 | 25 26 | ffvelcdmd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` x ) e. B ) |
| 28 | 21 27 | jca | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( z e. ( F ` x ) /\ ( F ` x ) e. B ) ) |
| 29 | ordtr1 | |- ( Ord B -> ( ( z e. ( F ` x ) /\ ( F ` x ) e. B ) -> z e. B ) ) |
|
| 30 | 20 28 29 | sylc | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. B ) |
| 31 | f1ocnvfv2 | |- ( ( F : A -1-1-onto-> B /\ z e. B ) -> ( F ` ( `' F ` z ) ) = z ) |
|
| 32 | 19 30 31 | syl2anc | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) = z ) |
| 33 | 32 21 | eqeltrd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) |
| 34 | simpll1 | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> F Isom _E , _E ( A , B ) ) |
|
| 35 | f1ocnv | |- ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A ) |
|
| 36 | f1of | |- ( `' F : B -1-1-onto-> A -> `' F : B --> A ) |
|
| 37 | 19 35 36 | 3syl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> `' F : B --> A ) |
| 38 | 37 30 | ffvelcdmd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( `' F ` z ) e. A ) |
| 39 | isorel | |- ( ( F Isom _E , _E ( A , B ) /\ ( ( `' F ` z ) e. A /\ x e. A ) ) -> ( ( `' F ` z ) _E x <-> ( F ` ( `' F ` z ) ) _E ( F ` x ) ) ) |
|
| 40 | 34 38 26 39 | syl12anc | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( ( `' F ` z ) _E x <-> ( F ` ( `' F ` z ) ) _E ( F ` x ) ) ) |
| 41 | epel | |- ( ( `' F ` z ) _E x <-> ( `' F ` z ) e. x ) |
|
| 42 | fvex | |- ( F ` x ) e. _V |
|
| 43 | 42 | epeli | |- ( ( F ` ( `' F ` z ) ) _E ( F ` x ) <-> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) |
| 44 | 40 41 43 | 3bitr3g | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( ( `' F ` z ) e. x <-> ( F ` ( `' F ` z ) ) e. ( F ` x ) ) ) |
| 45 | 33 44 | mpbird | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( `' F ` z ) e. x ) |
| 46 | simplrr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> A. y e. x ( F ` y ) = y ) |
|
| 47 | fveq2 | |- ( y = ( `' F ` z ) -> ( F ` y ) = ( F ` ( `' F ` z ) ) ) |
|
| 48 | id | |- ( y = ( `' F ` z ) -> y = ( `' F ` z ) ) |
|
| 49 | 47 48 | eqeq12d | |- ( y = ( `' F ` z ) -> ( ( F ` y ) = y <-> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) ) |
| 50 | 49 | rspcv | |- ( ( `' F ` z ) e. x -> ( A. y e. x ( F ` y ) = y -> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) ) |
| 51 | 45 46 50 | sylc | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> ( F ` ( `' F ` z ) ) = ( `' F ` z ) ) |
| 52 | 32 51 | eqtr3d | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z = ( `' F ` z ) ) |
| 53 | 52 45 | eqeltrd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. ( F ` x ) ) -> z e. x ) |
| 54 | simprr | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> A. y e. x ( F ` y ) = y ) |
|
| 55 | fveq2 | |- ( y = z -> ( F ` y ) = ( F ` z ) ) |
|
| 56 | id | |- ( y = z -> y = z ) |
|
| 57 | 55 56 | eqeq12d | |- ( y = z -> ( ( F ` y ) = y <-> ( F ` z ) = z ) ) |
| 58 | 57 | rspccva | |- ( ( A. y e. x ( F ` y ) = y /\ z e. x ) -> ( F ` z ) = z ) |
| 59 | 54 58 | sylan | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) = z ) |
| 60 | epel | |- ( z _E x <-> z e. x ) |
|
| 61 | 60 | biimpri | |- ( z e. x -> z _E x ) |
| 62 | 61 | adantl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z _E x ) |
| 63 | simpll1 | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> F Isom _E , _E ( A , B ) ) |
|
| 64 | simpl2 | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> Ord A ) |
|
| 65 | simprl | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> x e. A ) |
|
| 66 | 64 65 11 | syl2anc | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> x C_ A ) |
| 67 | 66 | sselda | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z e. A ) |
| 68 | simplrl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> x e. A ) |
|
| 69 | isorel | |- ( ( F Isom _E , _E ( A , B ) /\ ( z e. A /\ x e. A ) ) -> ( z _E x <-> ( F ` z ) _E ( F ` x ) ) ) |
|
| 70 | 63 67 68 69 | syl12anc | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( z _E x <-> ( F ` z ) _E ( F ` x ) ) ) |
| 71 | 62 70 | mpbid | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) _E ( F ` x ) ) |
| 72 | 42 | epeli | |- ( ( F ` z ) _E ( F ` x ) <-> ( F ` z ) e. ( F ` x ) ) |
| 73 | 71 72 | sylib | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> ( F ` z ) e. ( F ` x ) ) |
| 74 | 59 73 | eqeltrrd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) /\ z e. x ) -> z e. ( F ` x ) ) |
| 75 | 53 74 | impbida | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> ( z e. ( F ` x ) <-> z e. x ) ) |
| 76 | 75 | eqrdv | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ ( x e. A /\ A. y e. x ( F ` y ) = y ) ) -> ( F ` x ) = x ) |
| 77 | 76 | expr | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( F ` y ) = y -> ( F ` x ) = x ) ) |
| 78 | 16 77 | sylbid | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ x e. A ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( F ` x ) = x ) ) |
| 79 | 78 | ex | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( F ` x ) = x ) ) ) |
| 80 | 79 | com23 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( A. y e. x ( y e. A -> ( F ` y ) = y ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
| 81 | 80 | a2i | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
| 82 | 81 | a1i | |- ( x e. On -> ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. y e. x ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) ) |
| 83 | 10 82 | biimtrid | |- ( x e. On -> ( A. y e. x ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( y e. A -> ( F ` y ) = y ) ) -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) ) |
| 84 | 9 83 | tfis2 | |- ( x e. On -> ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) ) |
| 85 | 84 | com3l | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( x e. On -> ( F ` x ) = x ) ) ) |
| 86 | 3 85 | mpdd | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( x e. A -> ( F ` x ) = x ) ) |
| 87 | 86 | ralrimiv | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A. x e. A ( F ` x ) = x ) |
| 88 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 89 | id | |- ( x = z -> x = z ) |
|
| 90 | 88 89 | eqeq12d | |- ( x = z -> ( ( F ` x ) = x <-> ( F ` z ) = z ) ) |
| 91 | 90 | rspccva | |- ( ( A. x e. A ( F ` x ) = x /\ z e. A ) -> ( F ` z ) = z ) |
| 92 | 91 | adantll | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> ( F ` z ) = z ) |
| 93 | 23 | ffvelcdmda | |- ( ( F Isom _E , _E ( A , B ) /\ z e. A ) -> ( F ` z ) e. B ) |
| 94 | 93 | 3ad2antl1 | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ z e. A ) -> ( F ` z ) e. B ) |
| 95 | 94 | adantlr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> ( F ` z ) e. B ) |
| 96 | 92 95 | eqeltrrd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) /\ z e. A ) -> z e. B ) |
| 97 | 96 | ex | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. A -> z e. B ) ) |
| 98 | simpl1 | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> F Isom _E , _E ( A , B ) ) |
|
| 99 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 100 | forn | |- ( F : A -onto-> B -> ran F = B ) |
|
| 101 | 17 99 100 | 3syl | |- ( F Isom _E , _E ( A , B ) -> ran F = B ) |
| 102 | 98 101 | syl | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ran F = B ) |
| 103 | 102 | eleq2d | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. ran F <-> z e. B ) ) |
| 104 | f1ofn | |- ( F : A -1-1-onto-> B -> F Fn A ) |
|
| 105 | 17 104 | syl | |- ( F Isom _E , _E ( A , B ) -> F Fn A ) |
| 106 | 105 | 3ad2ant1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> F Fn A ) |
| 107 | 106 | adantr | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> F Fn A ) |
| 108 | fvelrnb | |- ( F Fn A -> ( z e. ran F <-> E. w e. A ( F ` w ) = z ) ) |
|
| 109 | 107 108 | syl | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. ran F <-> E. w e. A ( F ` w ) = z ) ) |
| 110 | 103 109 | bitr3d | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. B <-> E. w e. A ( F ` w ) = z ) ) |
| 111 | fveq2 | |- ( x = w -> ( F ` x ) = ( F ` w ) ) |
|
| 112 | id | |- ( x = w -> x = w ) |
|
| 113 | 111 112 | eqeq12d | |- ( x = w -> ( ( F ` x ) = x <-> ( F ` w ) = w ) ) |
| 114 | 113 | rspcv | |- ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( F ` w ) = w ) ) |
| 115 | 114 | a1i | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( F ` w ) = w ) ) ) |
| 116 | simpr | |- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> ( F ` w ) = z ) |
|
| 117 | simpl | |- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> ( F ` w ) = w ) |
|
| 118 | 116 117 | eqtr3d | |- ( ( ( F ` w ) = w /\ ( F ` w ) = z ) -> z = w ) |
| 119 | 118 | adantl | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> z = w ) |
| 120 | simplr | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> w e. A ) |
|
| 121 | 119 120 | eqeltrd | |- ( ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ w e. A ) /\ ( ( F ` w ) = w /\ ( F ` w ) = z ) ) -> z e. A ) |
| 122 | 121 | exp43 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( ( F ` w ) = w -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
| 123 | 115 122 | syldd | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( w e. A -> ( A. x e. A ( F ` x ) = x -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
| 124 | 123 | com23 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> ( A. x e. A ( F ` x ) = x -> ( w e. A -> ( ( F ` w ) = z -> z e. A ) ) ) ) |
| 125 | 124 | imp | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( w e. A -> ( ( F ` w ) = z -> z e. A ) ) ) |
| 126 | 125 | rexlimdv | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( E. w e. A ( F ` w ) = z -> z e. A ) ) |
| 127 | 110 126 | sylbid | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. B -> z e. A ) ) |
| 128 | 97 127 | impbid | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> ( z e. A <-> z e. B ) ) |
| 129 | 128 | eqrdv | |- ( ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) /\ A. x e. A ( F ` x ) = x ) -> A = B ) |
| 130 | 87 129 | mpdan | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ Ord B ) -> A = B ) |