This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a unital ring" as extension of the predicate "is a non-unital ring". (Contributed by AV, 17-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isringrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| isringrng.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | isringrng | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isringrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | isringrng.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringrng | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Rng ) | |
| 4 | 1 2 | ringideu | ⊢ ( 𝑅 ∈ Ring → ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) |
| 5 | reurex | ⊢ ( ∃! 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑅 ∈ Ring → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) |
| 7 | 3 6 | jca | ⊢ ( 𝑅 ∈ Ring → ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
| 8 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 9 | ablgrp | ⊢ ( 𝑅 ∈ Abel → 𝑅 ∈ Grp ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → 𝑅 ∈ Grp ) |
| 12 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 13 | 12 | rngmgp | ⊢ ( 𝑅 ∈ Rng → ( mulGrp ‘ 𝑅 ) ∈ Smgrp ) |
| 14 | 13 | anim1i | ⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
| 15 | 12 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 16 | 12 2 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 17 | 15 16 | ismnddef | ⊢ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |
| 18 | 14 17 | sylibr | ⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 19 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 20 | 1 12 19 2 | isrng | ⊢ ( 𝑅 ∈ Rng ↔ ( 𝑅 ∈ Abel ∧ ( mulGrp ‘ 𝑅 ) ∈ Smgrp ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
| 21 | 20 | simp3bi | ⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) |
| 23 | 1 12 19 2 | isring | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 · ( 𝑦 ( +g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝑥 · 𝑦 ) ( +g ‘ 𝑅 ) ( 𝑥 · 𝑧 ) ) ∧ ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) · 𝑧 ) = ( ( 𝑥 · 𝑧 ) ( +g ‘ 𝑅 ) ( 𝑦 · 𝑧 ) ) ) ) ) |
| 24 | 11 18 22 23 | syl3anbrc | ⊢ ( ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) → 𝑅 ∈ Ring ) |
| 25 | 7 24 | impbii | ⊢ ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Rng ∧ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 𝑦 ∧ ( 𝑦 · 𝑥 ) = 𝑦 ) ) ) |