This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | ||
| Assertion | opprring |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | ||
| 2 | ringrng | ||
| 3 | 1 | opprrng | |
| 4 | 2 3 | syl | |
| 5 | oveq1 | ||
| 6 | 5 | eqeq1d | |
| 7 | 6 | ovanraleqv | |
| 8 | eqid | ||
| 9 | eqid | ||
| 10 | 8 9 | ringidcl | |
| 11 | eqid | ||
| 12 | eqid | ||
| 13 | 8 11 1 12 | opprmul | |
| 14 | 8 11 9 | ringridm | |
| 15 | 13 14 | eqtrid | |
| 16 | 8 11 1 12 | opprmul | |
| 17 | 8 11 9 | ringlidm | |
| 18 | 16 17 | eqtrid | |
| 19 | 15 18 | jca | |
| 20 | 19 | ralrimiva | |
| 21 | 7 10 20 | rspcedvdw | |
| 22 | 1 8 | opprbas | |
| 23 | 22 12 | isringrng | |
| 24 | 4 21 23 | sylanbrc |