This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor is a functor on opposite categories. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppfoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppfoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| oppfoppc2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| Assertion | oppfoppc2 | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppfoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppfoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | oppfoppc2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | relfunc | ⊢ Rel ( 𝐶 Func 𝐷 ) | |
| 5 | 1st2nd | ⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) | |
| 6 | 4 3 5 | sylancr | ⊢ ( 𝜑 → 𝐹 = 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) ) |
| 8 | df-ov | ⊢ ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) = ( oppFunc ‘ 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 ) | |
| 9 | 7 8 | eqtr4di | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) = ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ) |
| 10 | 3 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
| 11 | 1 2 10 | oppfoppc | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐹 ) oppFunc ( 2nd ‘ 𝐹 ) ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 12 | 9 11 | eqeltrd | ⊢ ( 𝜑 → ( oppFunc ‘ 𝐹 ) ∈ ( 𝑂 Func 𝑃 ) ) |