This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The diagonal functor at a morphism is a natural transformation between constant functors. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| diag2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| diag2cl.h | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | ||
| Assertion | diag2cl | ⊢ ( 𝜑 → ( 𝐵 × { 𝐹 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | diag2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | diag2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | diag2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | diag2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 7 | diag2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | diag2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 9 | diag2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | diag2cl.h | ⊢ 𝑁 = ( 𝐷 Nat 𝐶 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 | diag2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
| 12 | eqid | ⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) | |
| 13 | 12 10 | fuchom | ⊢ 𝑁 = ( Hom ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 14 | relfunc | ⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) | |
| 15 | 1 5 6 12 | diagcl | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 16 | 1st2ndbr | ⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) | |
| 17 | 14 15 16 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 18 | 2 4 13 17 7 8 | funcf2 | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) : ( 𝑋 𝐻 𝑌 ) ⟶ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| 19 | 18 9 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |
| 20 | 11 19 | eqeltrrd | ⊢ ( 𝜑 → ( 𝐵 × { 𝐹 } ) ∈ ( ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) 𝑁 ( ( 1st ‘ 𝐿 ) ‘ 𝑌 ) ) ) |