This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the diagonal functor at a morphism. (Contributed by Mario Carneiro, 7-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag2.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| diag2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | ||
| diag2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| Assertion | diag2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag2.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag2.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 3 | diag2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 4 | diag2.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 5 | diag2.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | diag2.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 7 | diag2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 8 | diag2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) | |
| 9 | diag2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | 1 5 6 | diagval | ⊢ ( 𝜑 → 𝐿 = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ 𝐿 ) = ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) ) |
| 12 | 11 | oveqd | ⊢ ( 𝜑 → ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) = ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ) |
| 13 | 12 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) ) |
| 14 | eqid | ⊢ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) = ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) | |
| 15 | eqid | ⊢ ( 𝐶 ×c 𝐷 ) = ( 𝐶 ×c 𝐷 ) | |
| 16 | eqid | ⊢ ( 𝐶 1stF 𝐷 ) = ( 𝐶 1stF 𝐷 ) | |
| 17 | 15 5 6 16 | 1stfcl | ⊢ ( 𝜑 → ( 𝐶 1stF 𝐷 ) ∈ ( ( 𝐶 ×c 𝐷 ) Func 𝐶 ) ) |
| 18 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 19 | eqid | ⊢ ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) = ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) | |
| 20 | 14 2 5 6 17 3 4 18 7 8 9 19 | curf2 | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ ( 〈 𝐶 , 𝐷 〉 curryF ( 𝐶 1stF 𝐷 ) ) ) 𝑌 ) ‘ 𝐹 ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) ) |
| 21 | 15 2 3 | xpcbas | ⊢ ( 𝐴 × 𝐵 ) = ( Base ‘ ( 𝐶 ×c 𝐷 ) ) |
| 22 | eqid | ⊢ ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) = ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) | |
| 23 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ Cat ) |
| 24 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ Cat ) |
| 25 | opelxpi | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑋 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 26 | 7 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑋 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 27 | opelxpi | ⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑌 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) | |
| 28 | 8 27 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑌 , 𝑥 〉 ∈ ( 𝐴 × 𝐵 ) ) |
| 29 | 15 21 22 23 24 16 26 28 | 1stf2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) = ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ) |
| 30 | 29 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) |
| 31 | df-ov | ⊢ ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) | |
| 32 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 33 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) | |
| 35 | 3 33 18 24 34 | catidcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) |
| 36 | 32 35 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ∈ ( ( 𝑋 𝐻 𝑌 ) × ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) ) |
| 37 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑋 ∈ 𝐴 ) |
| 38 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑌 ∈ 𝐴 ) |
| 39 | 15 2 3 4 33 37 34 38 34 22 | xpchom2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) = ( ( 𝑋 𝐻 𝑌 ) × ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) ) |
| 40 | 36 39 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ∈ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) |
| 41 | 40 | fvresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) ) |
| 42 | 31 41 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 1st ↾ ( 〈 𝑋 , 𝑥 〉 ( Hom ‘ ( 𝐶 ×c 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) ) |
| 43 | op1stg | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑥 ) ) → ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = 𝐹 ) | |
| 44 | 9 35 43 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1st ‘ 〈 𝐹 , ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) 〉 ) = 𝐹 ) |
| 45 | 30 42 44 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) = 𝐹 ) |
| 46 | 45 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ 𝐹 ) ) |
| 47 | fconstmpt | ⊢ ( 𝐵 × { 𝐹 } ) = ( 𝑥 ∈ 𝐵 ↦ 𝐹 ) | |
| 48 | 46 47 | eqtr4di | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ( 〈 𝑋 , 𝑥 〉 ( 2nd ‘ ( 𝐶 1stF 𝐷 ) ) 〈 𝑌 , 𝑥 〉 ) ( ( Id ‘ 𝐷 ) ‘ 𝑥 ) ) ) = ( 𝐵 × { 𝐹 } ) ) |
| 49 | 13 20 48 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 ( 2nd ‘ 𝐿 ) 𝑌 ) ‘ 𝐹 ) = ( 𝐵 × { 𝐹 } ) ) |