This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functor of X is a functor. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diagval.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diagval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diagval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag11.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag11.c | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | ||
| diag11.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | ||
| Assertion | diag1cl | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diagval.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diagval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diagval.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag11.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag11.c | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 6 | diag11.k | ⊢ 𝐾 = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) | |
| 7 | eqid | ⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) | |
| 8 | 7 | fucbas | ⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 9 | relfunc | ⊢ Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) | |
| 10 | 1 2 3 7 | diagcl | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 11 | 1st2ndbr | ⊢ ( ( Rel ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ∧ 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 13 | 4 8 12 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
| 14 | 13 5 | ffvelcdmd | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 15 | 6 14 | eqeltrid | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Func 𝐶 ) ) |