This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor from the opposite category of functors to the category of opposite functors. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | ||
| fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | ||
| fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | ||
| fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | ||
| fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | ||
| fucoppcffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fucoppcffth.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| Assertion | fucoppcfunc | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fucoppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fucoppc.q | ⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) | |
| 4 | fucoppc.r | ⊢ 𝑅 = ( oppCat ‘ 𝑄 ) | |
| 5 | fucoppc.s | ⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) | |
| 6 | fucoppc.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 7 | fucoppc.f | ⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) | |
| 8 | fucoppc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) | |
| 9 | fucoppcffth.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 10 | fucoppcffth.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | fucoppcffth | ⊢ ( 𝜑 → 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 ) |
| 12 | inss1 | ⊢ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ⊆ ( 𝑅 Full 𝑆 ) | |
| 13 | fullfunc | ⊢ ( 𝑅 Full 𝑆 ) ⊆ ( 𝑅 Func 𝑆 ) | |
| 14 | 12 13 | sstri | ⊢ ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) ⊆ ( 𝑅 Func 𝑆 ) |
| 15 | 14 | ssbri | ⊢ ( 𝐹 ( ( 𝑅 Full 𝑆 ) ∩ ( 𝑅 Faith 𝑆 ) ) 𝐺 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |
| 16 | 11 15 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝑅 Func 𝑆 ) 𝐺 ) |