This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oppccat . (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | oppccatid | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | 1 2 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 4 | 3 | a1i | ⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 5 | eqidd | ⊢ ( 𝐶 ∈ Cat → ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) ) | |
| 6 | eqidd | ⊢ ( 𝐶 ∈ Cat → ( comp ‘ 𝑂 ) = ( comp ‘ 𝑂 ) ) | |
| 7 | 1 | fvexi | ⊢ 𝑂 ∈ V |
| 8 | 7 | a1i | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ V ) |
| 9 | biid | ⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 12 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 13 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 14 | 2 10 11 12 13 | catidcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 15 | 10 1 | oppchom | ⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 16 | 14 15 | eleqtrrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 17 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 18 | simpr1l | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 19 | simpr1r | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 20 | 2 17 1 18 19 19 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 21 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝐶 ∈ Cat ) | |
| 22 | simpr31 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) | |
| 23 | 10 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 24 | 22 23 | eleqtrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 25 | 2 10 11 21 19 17 18 24 | catrid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑓 ) |
| 26 | 20 25 | eqtrd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑦 ) 𝑓 ) = 𝑓 ) |
| 27 | simpr2l | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 28 | 2 17 1 19 19 27 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) ) |
| 29 | simpr32 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ) | |
| 30 | 10 1 | oppchom | ⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 31 | 29 30 | eleqtrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑔 ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 32 | 2 10 11 21 27 17 19 31 | catlid | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑔 ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) = 𝑔 ) |
| 34 | 2 17 1 18 19 27 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) = ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) |
| 35 | 2 10 17 21 27 19 18 31 24 | catcocl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 36 | 34 35 | eqeltrd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 37 | 10 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 38 | 36 37 | eleqtrrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑧 ) ) |
| 39 | simpr2r | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → 𝑤 ∈ ( Base ‘ 𝐶 ) ) | |
| 40 | simpr33 | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) | |
| 41 | 10 1 | oppchom | ⊢ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) = ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) |
| 42 | 40 41 | eleqtrdi | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ℎ ∈ ( 𝑤 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 43 | 2 10 17 21 39 27 19 42 31 18 24 | catass | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
| 44 | 2 17 1 18 27 39 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) = ( ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑥 ) ℎ ) ) |
| 45 | 2 17 1 18 19 39 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( 𝑓 ( 〈 𝑤 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) ) |
| 46 | 43 44 45 | 3eqtr4rd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 47 | 2 17 1 19 27 39 | oppcco | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) = ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ) |
| 48 | 47 | oveq1d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ( 𝑔 ( 〈 𝑤 , 𝑧 〉 ( comp ‘ 𝐶 ) 𝑦 ) ℎ ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) ) |
| 49 | 34 | oveq2d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑓 ( 〈 𝑧 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑔 ) ) ) |
| 50 | 46 48 49 | 3eqtr4d | ⊢ ( ( 𝐶 ∈ Cat ∧ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐶 ) ∧ 𝑤 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑧 ) ∧ ℎ ∈ ( 𝑧 ( Hom ‘ 𝑂 ) 𝑤 ) ) ) ) → ( ( ℎ ( 〈 𝑦 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑤 ) 𝑓 ) = ( ℎ ( 〈 𝑥 , 𝑧 〉 ( comp ‘ 𝑂 ) 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝑂 ) 𝑧 ) 𝑓 ) ) ) |
| 51 | 4 5 6 8 9 16 26 33 38 50 | iscatd2 | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 52 | 2 11 | cidfn | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ) |
| 53 | dffn5 | ⊢ ( ( Id ‘ 𝐶 ) Fn ( Base ‘ 𝐶 ) ↔ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) | |
| 54 | 52 53 | sylib | ⊢ ( 𝐶 ∈ Cat → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) |
| 55 | 54 | eqeq2d | ⊢ ( 𝐶 ∈ Cat → ( ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ↔ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) |
| 56 | 55 | anbi2d | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ↔ ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ( Id ‘ 𝐶 ) ‘ 𝑦 ) ) ) ) ) |
| 57 | 51 56 | mpbird | ⊢ ( 𝐶 ∈ Cat → ( 𝑂 ∈ Cat ∧ ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) ) ) |