This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of iscatd with a uniform assumption list, for increased proof sharing capabilities. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscatd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| iscatd2.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | ||
| iscatd2.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | ||
| iscatd2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| iscatd2.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) | ||
| iscatd2.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ( 𝑦 𝐻 𝑦 ) ) | ||
| iscatd2.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) | ||
| iscatd2.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) | ||
| iscatd2.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) | ||
| iscatd2.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) | ||
| Assertion | iscatd2 | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscatd2.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
| 2 | iscatd2.h | ⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) | |
| 3 | iscatd2.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | |
| 4 | iscatd2.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | iscatd2.ps | ⊢ ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) | |
| 6 | iscatd2.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → 1 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 7 | iscatd2.2 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) | |
| 8 | iscatd2.3 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) | |
| 9 | iscatd2.4 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) | |
| 10 | iscatd2.5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) | |
| 11 | 6 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 12 | 11 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 13 | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 15 | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 16 | 12 15 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 17 | exdistrv | ⊢ ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ↔ ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) | |
| 18 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝜑 ) | |
| 19 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑎 ∈ 𝐵 ) | |
| 20 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 21 | 19 20 | jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 22 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) | |
| 23 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 24 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 25 | 22 23 24 | 3jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 26 | simplll | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑥 = 𝑎 ) | |
| 27 | 26 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 28 | 27 | anbi1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 29 | simpllr | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑧 = 𝑦 ) | |
| 30 | 29 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 31 | simplr | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑦 ) | |
| 32 | 31 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 33 | 30 32 | anbi12d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 34 | anidm | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) | |
| 35 | 33 34 | bitrdi | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 36 | simpr | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) | |
| 37 | 26 | oveq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑦 ) ) |
| 38 | 36 37 | eleq12d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) |
| 39 | 29 | oveq2d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 40 | 39 | eleq2d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 41 | 29 31 | oveq12d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 42 | 41 | eleq2d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 43 | 38 40 42 | 3anbi123d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) |
| 44 | 28 35 43 | 3anbi123d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
| 45 | 5 44 | bitrid | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) |
| 46 | 45 | anbi2d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) ) ) |
| 47 | 26 | opeq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑎 , 𝑦 〉 ) |
| 48 | 47 | oveq1d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) = ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) ) |
| 49 | eqidd | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → 1 = 1 ) | |
| 50 | 48 49 36 | oveq123d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) ) |
| 51 | 50 36 | eqeq12d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 52 | 46 51 | imbi12d | ⊢ ( ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 53 | 52 | sbiedvw | ⊢ ( ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) ∧ 𝑤 = 𝑦 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 54 | 53 | sbiedvw | ⊢ ( ( 𝑥 = 𝑎 ∧ 𝑧 = 𝑦 ) → ( [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 55 | 54 | sbiedvw | ⊢ ( 𝑥 = 𝑎 → ( [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) ↔ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) ) |
| 56 | 7 | sbt | ⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 57 | 56 | sbt | ⊢ [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 58 | 57 | sbt | ⊢ [ 𝑦 / 𝑧 ] [ 𝑦 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 1 ( 〈 𝑥 , 𝑦 〉 · 𝑦 ) 𝑓 ) = 𝑓 ) |
| 59 | 55 58 | chvarvv | ⊢ ( ( 𝜑 ∧ ( ( 𝑎 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 60 | 18 21 20 25 59 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) ∧ ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 61 | 60 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 62 | 61 | exlimdvv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ∃ 𝑔 ∃ 𝑘 ( 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 63 | 17 62 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( ( ∃ 𝑔 𝑔 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑦 𝐻 𝑦 ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) ) |
| 64 | 14 16 63 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑎 𝐻 𝑦 ) ) ) → ( 1 ( 〈 𝑎 , 𝑦 〉 · 𝑦 ) 𝑟 ) = 𝑟 ) |
| 65 | 11 | 3ad2antr1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 66 | n0 | ⊢ ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 67 | 65 66 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) |
| 68 | id | ⊢ ( 𝑦 = 𝑎 → 𝑦 = 𝑎 ) | |
| 69 | 68 68 | oveq12d | ⊢ ( 𝑦 = 𝑎 → ( 𝑦 𝐻 𝑦 ) = ( 𝑎 𝐻 𝑎 ) ) |
| 70 | 69 | neeq1d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) ) |
| 71 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 73 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) | |
| 74 | 70 72 73 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑎 𝐻 𝑎 ) ≠ ∅ ) |
| 75 | n0 | ⊢ ( ( 𝑎 𝐻 𝑎 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) | |
| 76 | 74 75 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) |
| 77 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ↔ ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) | |
| 78 | simpll | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝜑 ) | |
| 79 | simplr1 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 80 | simplr2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑎 ∈ 𝐵 ) | |
| 81 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) | |
| 82 | simplr3 | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) | |
| 83 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) | |
| 84 | 81 82 83 | 3jca | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
| 85 | simplll | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑥 = 𝑦 ) | |
| 86 | 85 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
| 87 | 86 | anbi1d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 88 | 87 34 | bitrdi | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ 𝑦 ∈ 𝐵 ) ) |
| 89 | simpllr | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑧 = 𝑎 ) | |
| 90 | 89 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 91 | simplr | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑤 = 𝑎 ) | |
| 92 | 91 | eleq1d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 93 | 90 92 | anbi12d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 94 | anidm | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) | |
| 95 | 93 94 | bitrdi | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑎 ∈ 𝐵 ) ) |
| 96 | 85 | oveq1d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑦 𝐻 𝑦 ) ) |
| 97 | 96 | eleq2d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ) ) |
| 98 | simpr | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 𝑔 = 𝑟 ) | |
| 99 | 89 | oveq2d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑎 ) ) |
| 100 | 98 99 | eleq12d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
| 101 | 89 91 | oveq12d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑎 𝐻 𝑎 ) ) |
| 102 | 101 | eleq2d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) |
| 103 | 97 100 102 | 3anbi123d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) |
| 104 | 88 95 103 | 3anbi123d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
| 105 | 5 104 | bitrid | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝜓 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) |
| 106 | 105 | anbi2d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) ) ) |
| 107 | 89 | oveq2d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) ) |
| 108 | eqidd | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → 1 = 1 ) | |
| 109 | 107 98 108 | oveq123d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) ) |
| 110 | 109 98 | eqeq12d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ↔ ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 111 | 106 110 | imbi12d | ⊢ ( ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) ∧ 𝑔 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 112 | 111 | sbiedvw | ⊢ ( ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) ∧ 𝑤 = 𝑎 ) → ( [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 113 | 112 | sbiedvw | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑧 = 𝑎 ) → ( [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 114 | 113 | sbiedvw | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) ) |
| 115 | 8 | sbt | ⊢ [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 116 | 115 | sbt | ⊢ [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 117 | 116 | sbt | ⊢ [ 𝑎 / 𝑧 ] [ 𝑎 / 𝑤 ] [ 𝑟 / 𝑔 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑦 , 𝑦 〉 · 𝑧 ) 1 ) = 𝑔 ) |
| 118 | 114 117 | chvarvv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 119 | 78 79 80 84 118 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) ∧ ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 120 | 119 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 121 | 120 | exlimdvv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ∃ 𝑓 ∃ 𝑘 ( 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 122 | 77 121 | biimtrrid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( ( ∃ 𝑓 𝑓 ∈ ( 𝑦 𝐻 𝑦 ) ∧ ∃ 𝑘 𝑘 ∈ ( 𝑎 𝐻 𝑎 ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) ) |
| 123 | 67 76 122 | mp2and | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) → ( 𝑟 ( 〈 𝑦 , 𝑦 〉 · 𝑎 ) 1 ) = 𝑟 ) |
| 124 | id | ⊢ ( 𝑦 = 𝑧 → 𝑦 = 𝑧 ) | |
| 125 | 124 124 | oveq12d | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑧 ) ) |
| 126 | 125 | neeq1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) ) |
| 127 | 71 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝑦 𝐻 𝑦 ) ≠ ∅ ) |
| 128 | simp23 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → 𝑧 ∈ 𝐵 ) | |
| 129 | 126 127 128 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑧 𝐻 𝑧 ) ≠ ∅ ) |
| 130 | n0 | ⊢ ( ( 𝑧 𝐻 𝑧 ) ≠ ∅ ↔ ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) | |
| 131 | 129 130 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) |
| 132 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 133 | 132 | 3anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 134 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑎 ) = ( 𝑦 𝐻 𝑎 ) ) | |
| 135 | 134 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ↔ 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ) ) |
| 136 | 135 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) ) |
| 137 | 136 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 138 | 133 137 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 139 | 138 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
| 140 | opeq1 | ⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑎 〉 = 〈 𝑦 , 𝑎 〉 ) | |
| 141 | 140 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) ) |
| 142 | 141 | oveqd | ⊢ ( 𝑥 = 𝑦 → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) = ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 143 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 𝐻 𝑧 ) = ( 𝑦 𝐻 𝑧 ) ) | |
| 144 | 142 143 | eleq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 145 | 139 144 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) |
| 146 | df-3an | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) | |
| 147 | 5 146 | bitri | ⊢ ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 148 | simpll | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) | |
| 149 | 148 | eleq1d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 150 | 149 | anbi2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 151 | simplr | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑤 = 𝑧 ) | |
| 152 | 151 | eleq1d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑤 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 153 | 152 | anbi2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 154 | anidm | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) | |
| 155 | 153 154 | bitrdi | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ↔ 𝑧 ∈ 𝐵 ) ) |
| 156 | 150 155 | anbi12d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 157 | df-3an | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) ) | |
| 158 | 156 157 | bitr4di | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) ) |
| 159 | simpr | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) | |
| 160 | 148 | oveq2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
| 161 | 159 160 | eleq12d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
| 162 | 148 | oveq1d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
| 163 | 162 | eleq2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
| 164 | 151 | oveq2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑧 𝐻 𝑧 ) ) |
| 165 | 164 | eleq2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ↔ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) |
| 166 | 161 163 165 | 3anbi123d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 167 | df-3an | ⊢ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) | |
| 168 | 166 167 | bitrdi | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) |
| 169 | 158 168 | anbi12d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 170 | 147 169 | bitrid | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) |
| 171 | 170 | anbi2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) ) ) |
| 172 | 148 | opeq2d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
| 173 | 172 | oveq1d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
| 174 | eqidd | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) | |
| 175 | 173 174 159 | oveq123d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 176 | 175 | eleq1d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) |
| 177 | 171 176 | imbi12d | ⊢ ( ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 178 | 177 | sbiedvw | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑤 = 𝑧 ) → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 179 | 178 | sbiedvw | ⊢ ( 𝑦 = 𝑎 → ( [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) ) ) |
| 180 | 9 | sbt | ⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 181 | 180 | sbt | ⊢ [ 𝑧 / 𝑤 ] [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 182 | 179 181 | chvarvv | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
| 183 | 145 182 | chvarvv | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 184 | 183 | exp45 | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) ) ) |
| 185 | 184 | 3imp | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 186 | 185 | exlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( ∃ 𝑘 𝑘 ∈ ( 𝑧 𝐻 𝑧 ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) ) |
| 187 | 131 186 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 188 | 132 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 189 | 188 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ) ) |
| 190 | 135 | 3anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 191 | 189 190 | 3anbi23d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 192 | 140 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) ) |
| 193 | 192 | oveqd | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
| 194 | opeq1 | ⊢ ( 𝑥 = 𝑦 → 〈 𝑥 , 𝑧 〉 = 〈 𝑦 , 𝑧 〉 ) | |
| 195 | 194 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ) |
| 196 | eqidd | ⊢ ( 𝑥 = 𝑦 → 𝑘 = 𝑘 ) | |
| 197 | 195 196 142 | oveq123d | ⊢ ( 𝑥 = 𝑦 → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 198 | 193 197 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
| 199 | 191 198 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 200 | simpl | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑦 = 𝑎 ) | |
| 201 | 200 | eleq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑎 ∈ 𝐵 ) ) |
| 202 | 201 | anbi2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ) ) |
| 203 | simpr | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑓 = 𝑟 ) | |
| 204 | 200 | oveq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 𝐻 𝑎 ) ) |
| 205 | 203 204 | eleq12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ) ) |
| 206 | 200 | oveq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑎 𝐻 𝑧 ) ) |
| 207 | 206 | eleq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ↔ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ) ) |
| 208 | 205 207 | 3anbi12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ↔ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) |
| 209 | 202 208 | 3anbi13d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 210 | 5 209 | bitrid | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 211 | df-3an | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) | |
| 212 | 210 211 | bitrdi | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝜓 ↔ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 213 | 212 | anbi2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) ) |
| 214 | 3anass | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ↔ ( 𝜑 ∧ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) | |
| 215 | 213 214 | bitr4di | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) ) ) |
| 216 | 200 | opeq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑥 , 𝑎 〉 ) |
| 217 | 216 | oveq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) ) |
| 218 | 200 | opeq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑎 , 𝑧 〉 ) |
| 219 | 218 | oveq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) ) |
| 220 | 219 | oveqd | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ) |
| 221 | 217 220 203 | oveq123d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) ) |
| 222 | 216 | oveq1d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) ) |
| 223 | eqidd | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → 𝑔 = 𝑔 ) | |
| 224 | 222 223 203 | oveq123d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) |
| 225 | 224 | oveq2d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 226 | 221 225 | eqeq12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ↔ ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) |
| 227 | 215 226 | imbi12d | ⊢ ( ( 𝑦 = 𝑎 ∧ 𝑓 = 𝑟 ) → ( ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 228 | 227 | sbiedvw | ⊢ ( 𝑦 = 𝑎 → ( [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ↔ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) ) ) |
| 229 | 10 | sbt | ⊢ [ 𝑟 / 𝑓 ] ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) |
| 230 | 228 229 | chvarvv | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑥 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 231 | 199 230 | chvarvv | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) ∧ ( 𝑟 ∈ ( 𝑦 𝐻 𝑎 ) ∧ 𝑔 ∈ ( 𝑎 𝐻 𝑧 ) ∧ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ) ) → ( ( 𝑘 ( 〈 𝑎 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑦 , 𝑎 〉 · 𝑤 ) 𝑟 ) = ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑦 , 𝑎 〉 · 𝑧 ) 𝑟 ) ) ) |
| 232 | 1 2 3 4 6 64 123 187 231 | iscatd | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 233 | 1 2 3 232 6 64 123 | catidd | ⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) |
| 234 | 232 233 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ 𝐵 ↦ 1 ) ) ) |