This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 17-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| oppchomf.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | ||
| Assertion | oppchomf | ⊢ tpos 𝐻 = ( Homf ‘ 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcbas.1 | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | oppchomf.h | ⊢ 𝐻 = ( Homf ‘ 𝐶 ) | |
| 3 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 4 | 3 1 | oppchom | ⊢ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) |
| 5 | 4 | a1i | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 6 | 5 | mpoeq3ia | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 7 | eqid | ⊢ ( Homf ‘ 𝑂 ) = ( Homf ‘ 𝑂 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 9 | 1 8 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 10 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 11 | 7 9 10 | homffval | ⊢ ( Homf ‘ 𝑂 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑦 ( Hom ‘ 𝑂 ) 𝑥 ) ) |
| 12 | 2 8 3 | homffval | ⊢ 𝐻 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 13 | 12 | tposmpo | ⊢ tpos 𝐻 = ( 𝑦 ∈ ( Base ‘ 𝐶 ) , 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 14 | 6 11 13 | 3eqtr4ri | ⊢ tpos 𝐻 = ( Homf ‘ 𝑂 ) |