This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an ordinal number is even, its successor is odd. (Contributed by NM, 26-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneo | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> -. suc C = ( 2o .o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onnbtwn | |- ( A e. On -> -. ( A e. B /\ B e. suc A ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> -. ( A e. B /\ B e. suc A ) ) |
| 3 | suceq | |- ( C = ( 2o .o A ) -> suc C = suc ( 2o .o A ) ) |
|
| 4 | 3 | eqeq1d | |- ( C = ( 2o .o A ) -> ( suc C = ( 2o .o B ) <-> suc ( 2o .o A ) = ( 2o .o B ) ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc C = ( 2o .o B ) <-> suc ( 2o .o A ) = ( 2o .o B ) ) ) |
| 6 | ovex | |- ( 2o .o A ) e. _V |
|
| 7 | 6 | sucid | |- ( 2o .o A ) e. suc ( 2o .o A ) |
| 8 | eleq2 | |- ( suc ( 2o .o A ) = ( 2o .o B ) -> ( ( 2o .o A ) e. suc ( 2o .o A ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
|
| 9 | 7 8 | mpbii | |- ( suc ( 2o .o A ) = ( 2o .o B ) -> ( 2o .o A ) e. ( 2o .o B ) ) |
| 10 | 2on | |- 2o e. On |
|
| 11 | omord | |- ( ( A e. On /\ B e. On /\ 2o e. On ) -> ( ( A e. B /\ (/) e. 2o ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
|
| 12 | 10 11 | mp3an3 | |- ( ( A e. On /\ B e. On ) -> ( ( A e. B /\ (/) e. 2o ) <-> ( 2o .o A ) e. ( 2o .o B ) ) ) |
| 13 | simpl | |- ( ( A e. B /\ (/) e. 2o ) -> A e. B ) |
|
| 14 | 12 13 | biimtrrdi | |- ( ( A e. On /\ B e. On ) -> ( ( 2o .o A ) e. ( 2o .o B ) -> A e. B ) ) |
| 15 | 9 14 | syl5 | |- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> A e. B ) ) |
| 16 | simpr | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> suc ( 2o .o A ) = ( 2o .o B ) ) |
|
| 17 | omcl | |- ( ( 2o e. On /\ A e. On ) -> ( 2o .o A ) e. On ) |
|
| 18 | 10 17 | mpan | |- ( A e. On -> ( 2o .o A ) e. On ) |
| 19 | oa1suc | |- ( ( 2o .o A ) e. On -> ( ( 2o .o A ) +o 1o ) = suc ( 2o .o A ) ) |
|
| 20 | 18 19 | syl | |- ( A e. On -> ( ( 2o .o A ) +o 1o ) = suc ( 2o .o A ) ) |
| 21 | 1oex | |- 1o e. _V |
|
| 22 | 21 | sucid | |- 1o e. suc 1o |
| 23 | df-2o | |- 2o = suc 1o |
|
| 24 | 22 23 | eleqtrri | |- 1o e. 2o |
| 25 | 1on | |- 1o e. On |
|
| 26 | oaord | |- ( ( 1o e. On /\ 2o e. On /\ ( 2o .o A ) e. On ) -> ( 1o e. 2o <-> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) ) |
|
| 27 | 25 10 18 26 | mp3an12i | |- ( A e. On -> ( 1o e. 2o <-> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) ) |
| 28 | 24 27 | mpbii | |- ( A e. On -> ( ( 2o .o A ) +o 1o ) e. ( ( 2o .o A ) +o 2o ) ) |
| 29 | omsuc | |- ( ( 2o e. On /\ A e. On ) -> ( 2o .o suc A ) = ( ( 2o .o A ) +o 2o ) ) |
|
| 30 | 10 29 | mpan | |- ( A e. On -> ( 2o .o suc A ) = ( ( 2o .o A ) +o 2o ) ) |
| 31 | 28 30 | eleqtrrd | |- ( A e. On -> ( ( 2o .o A ) +o 1o ) e. ( 2o .o suc A ) ) |
| 32 | 20 31 | eqeltrrd | |- ( A e. On -> suc ( 2o .o A ) e. ( 2o .o suc A ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> suc ( 2o .o A ) e. ( 2o .o suc A ) ) |
| 34 | 16 33 | eqeltrrd | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( 2o .o B ) e. ( 2o .o suc A ) ) |
| 35 | onsuc | |- ( A e. On -> suc A e. On ) |
|
| 36 | omord | |- ( ( B e. On /\ suc A e. On /\ 2o e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
|
| 37 | 10 36 | mp3an3 | |- ( ( B e. On /\ suc A e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 38 | 35 37 | sylan2 | |- ( ( B e. On /\ A e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 39 | 38 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 40 | 39 | adantr | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( ( B e. suc A /\ (/) e. 2o ) <-> ( 2o .o B ) e. ( 2o .o suc A ) ) ) |
| 41 | 34 40 | mpbird | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> ( B e. suc A /\ (/) e. 2o ) ) |
| 42 | 41 | simpld | |- ( ( ( A e. On /\ B e. On ) /\ suc ( 2o .o A ) = ( 2o .o B ) ) -> B e. suc A ) |
| 43 | 42 | ex | |- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> B e. suc A ) ) |
| 44 | 15 43 | jcad | |- ( ( A e. On /\ B e. On ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 45 | 44 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc ( 2o .o A ) = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 46 | 5 45 | sylbid | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> ( suc C = ( 2o .o B ) -> ( A e. B /\ B e. suc A ) ) ) |
| 47 | 2 46 | mtod | |- ( ( A e. On /\ B e. On /\ C = ( 2o .o A ) ) -> -. suc C = ( 2o .o B ) ) |