This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpinvlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpinvlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpinvlt.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| Assertion | ogrpinvlt | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝐼 ‘ 𝑌 ) < ( 𝐼 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpinvlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpinvlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpinvlt.2 | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | simp1l | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ oGrp ) | |
| 5 | simp2 | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp3 | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 7 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 8 | 4 7 | syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐺 ∈ Grp ) |
| 9 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) |
| 10 | 8 6 9 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 12 | 1 2 11 | ogrpaddltbi | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 13 | 4 5 6 10 12 | syl13anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 14 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 15 | 1 11 14 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 16 | 8 6 15 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 0g ‘ 𝐺 ) ) |
| 17 | 16 | breq2d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 𝑌 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ↔ ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 0g ‘ 𝐺 ) ) ) |
| 18 | simp1r | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) | |
| 19 | 1 11 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 20 | 8 5 10 19 | syl3anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ∈ 𝐵 ) |
| 21 | 1 14 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 22 | 4 7 21 | 3syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 23 | 1 3 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 24 | 8 5 23 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) |
| 25 | 1 2 11 4 18 20 22 24 | ogrpaddltrbid | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) < ( 0g ‘ 𝐺 ) ↔ ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
| 26 | 13 17 25 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
| 27 | 1 11 14 3 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 28 | 8 5 27 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 29 | 28 | oveq1d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) |
| 30 | 1 11 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 31 | 8 24 5 10 30 | syl13anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑋 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 32 | 1 11 14 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑌 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ 𝑌 ) ) |
| 33 | 8 10 32 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) = ( 𝐼 ‘ 𝑌 ) ) |
| 34 | 29 31 33 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) = ( 𝐼 ‘ 𝑌 ) ) |
| 35 | 1 11 14 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐼 ‘ 𝑋 ) ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 36 | 8 24 35 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝐼 ‘ 𝑋 ) ) |
| 37 | 34 36 | breq12d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑋 ( +g ‘ 𝐺 ) ( 𝐼 ‘ 𝑌 ) ) ) < ( ( 𝐼 ‘ 𝑋 ) ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ↔ ( 𝐼 ‘ 𝑌 ) < ( 𝐼 ‘ 𝑋 ) ) ) |
| 38 | 26 37 | bitrd | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( oppg ‘ 𝐺 ) ∈ oGrp ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝐼 ‘ 𝑌 ) < ( 𝐼 ‘ 𝑋 ) ) ) |