This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 4-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ogrpaddltrd.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| ogrpaddltrd.2 | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) | ||
| ogrpaddltrd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ogrpaddltrd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ogrpaddltrd.5 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| Assertion | ogrpaddltrbid | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | ogrpaddltrd.1 | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 5 | ogrpaddltrd.2 | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ oGrp ) | |
| 6 | ogrpaddltrd.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ogrpaddltrd.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | ogrpaddltrd.5 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝐺 ∈ 𝑉 ) |
| 10 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
| 11 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 ∈ 𝐵 ) |
| 12 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑌 ∈ 𝐵 ) |
| 13 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑍 ∈ 𝐵 ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → 𝑋 < 𝑌 ) | |
| 15 | 1 2 3 9 10 11 12 13 14 | ogrpaddltrd | ⊢ ( ( 𝜑 ∧ 𝑋 < 𝑌 ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) |
| 16 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺 ∈ 𝑉 ) |
| 17 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg ‘ 𝐺 ) ∈ oGrp ) |
| 18 | ogrpgrp | ⊢ ( ( oppg ‘ 𝐺 ) ∈ oGrp → ( oppg ‘ 𝐺 ) ∈ Grp ) | |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 22 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑍 ∈ 𝐵 ) |
| 23 | eqid | ⊢ ( oppg ‘ 𝐺 ) = ( oppg ‘ 𝐺 ) | |
| 24 | eqid | ⊢ ( +g ‘ ( oppg ‘ 𝐺 ) ) = ( +g ‘ ( oppg ‘ 𝐺 ) ) | |
| 25 | 3 23 24 | oppgplus | ⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
| 26 | 23 1 | oppgbas | ⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝐺 ) ) |
| 27 | 26 24 | grpcl | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ∈ 𝐵 ) |
| 28 | 25 27 | eqeltrrid | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 ) |
| 29 | 20 21 22 28 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) ∈ 𝐵 ) |
| 30 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 31 | 3 23 24 | oppgplus | ⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
| 32 | 26 24 | grpcl | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ( +g ‘ ( oppg ‘ 𝐺 ) ) 𝑍 ) ∈ 𝐵 ) |
| 33 | 31 32 | eqeltrrid | ⊢ ( ( ( oppg ‘ 𝐺 ) ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 34 | 20 30 22 33 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
| 35 | 23 | oppggrpb | ⊢ ( 𝐺 ∈ Grp ↔ ( oppg ‘ 𝐺 ) ∈ Grp ) |
| 36 | 20 35 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝐺 ∈ Grp ) |
| 37 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 38 | 1 37 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 39 | 36 22 38 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) | |
| 41 | 1 2 3 16 17 29 34 39 40 | ogrpaddltrd | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) < ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 42 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 43 | 1 3 42 37 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 44 | 36 22 43 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 45 | 44 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 46 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 47 | 36 39 22 21 46 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 48 | 1 3 42 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 49 | 36 21 48 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 50 | 45 47 49 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 51 | 44 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
| 52 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 53 | 36 39 22 30 52 | syl13anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 54 | 1 3 42 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 55 | 36 30 54 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 56 | 51 53 55 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 57 | 41 50 56 | 3brtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) → 𝑋 < 𝑌 ) |
| 58 | 15 57 | impbida | ⊢ ( 𝜑 → ( 𝑋 < 𝑌 ↔ ( 𝑍 + 𝑋 ) < ( 𝑍 + 𝑌 ) ) ) |