This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered group, the ordering is compatible with group inverse. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpinvlt.0 | |- B = ( Base ` G ) |
|
| ogrpinvlt.1 | |- .< = ( lt ` G ) |
||
| ogrpinvlt.2 | |- I = ( invg ` G ) |
||
| Assertion | ogrpinvlt | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( I ` Y ) .< ( I ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpinvlt.0 | |- B = ( Base ` G ) |
|
| 2 | ogrpinvlt.1 | |- .< = ( lt ` G ) |
|
| 3 | ogrpinvlt.2 | |- I = ( invg ` G ) |
|
| 4 | simp1l | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> G e. oGrp ) |
|
| 5 | simp2 | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | simp3 | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 7 | ogrpgrp | |- ( G e. oGrp -> G e. Grp ) |
|
| 8 | 4 7 | syl | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> G e. Grp ) |
| 9 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( I ` Y ) e. B ) |
| 10 | 8 6 9 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( I ` Y ) e. B ) |
| 11 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 12 | 1 2 11 | ogrpaddltbi | |- ( ( G e. oGrp /\ ( X e. B /\ Y e. B /\ ( I ` Y ) e. B ) ) -> ( X .< Y <-> ( X ( +g ` G ) ( I ` Y ) ) .< ( Y ( +g ` G ) ( I ` Y ) ) ) ) |
| 13 | 4 5 6 10 12 | syl13anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X ( +g ` G ) ( I ` Y ) ) .< ( Y ( +g ` G ) ( I ` Y ) ) ) ) |
| 14 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 15 | 1 11 14 3 | grprinv | |- ( ( G e. Grp /\ Y e. B ) -> ( Y ( +g ` G ) ( I ` Y ) ) = ( 0g ` G ) ) |
| 16 | 8 6 15 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( Y ( +g ` G ) ( I ` Y ) ) = ( 0g ` G ) ) |
| 17 | 16 | breq2d | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( X ( +g ` G ) ( I ` Y ) ) .< ( Y ( +g ` G ) ( I ` Y ) ) <-> ( X ( +g ` G ) ( I ` Y ) ) .< ( 0g ` G ) ) ) |
| 18 | simp1r | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( oppG ` G ) e. oGrp ) |
|
| 19 | 1 11 | grpcl | |- ( ( G e. Grp /\ X e. B /\ ( I ` Y ) e. B ) -> ( X ( +g ` G ) ( I ` Y ) ) e. B ) |
| 20 | 8 5 10 19 | syl3anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( X ( +g ` G ) ( I ` Y ) ) e. B ) |
| 21 | 1 14 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 22 | 4 7 21 | 3syl | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( 0g ` G ) e. B ) |
| 23 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) |
| 24 | 8 5 23 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( I ` X ) e. B ) |
| 25 | 1 2 11 4 18 20 22 24 | ogrpaddltrbid | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( X ( +g ` G ) ( I ` Y ) ) .< ( 0g ` G ) <-> ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) .< ( ( I ` X ) ( +g ` G ) ( 0g ` G ) ) ) ) |
| 26 | 13 17 25 | 3bitrd | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) .< ( ( I ` X ) ( +g ` G ) ( 0g ` G ) ) ) ) |
| 27 | 1 11 14 3 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = ( 0g ` G ) ) |
| 28 | 8 5 27 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( I ` X ) ( +g ` G ) X ) = ( 0g ` G ) ) |
| 29 | 28 | oveq1d | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( ( I ` X ) ( +g ` G ) X ) ( +g ` G ) ( I ` Y ) ) = ( ( 0g ` G ) ( +g ` G ) ( I ` Y ) ) ) |
| 30 | 1 11 | grpass | |- ( ( G e. Grp /\ ( ( I ` X ) e. B /\ X e. B /\ ( I ` Y ) e. B ) ) -> ( ( ( I ` X ) ( +g ` G ) X ) ( +g ` G ) ( I ` Y ) ) = ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) ) |
| 31 | 8 24 5 10 30 | syl13anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( ( I ` X ) ( +g ` G ) X ) ( +g ` G ) ( I ` Y ) ) = ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) ) |
| 32 | 1 11 14 | grplid | |- ( ( G e. Grp /\ ( I ` Y ) e. B ) -> ( ( 0g ` G ) ( +g ` G ) ( I ` Y ) ) = ( I ` Y ) ) |
| 33 | 8 10 32 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( 0g ` G ) ( +g ` G ) ( I ` Y ) ) = ( I ` Y ) ) |
| 34 | 29 31 33 | 3eqtr3d | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) = ( I ` Y ) ) |
| 35 | 1 11 14 | grprid | |- ( ( G e. Grp /\ ( I ` X ) e. B ) -> ( ( I ` X ) ( +g ` G ) ( 0g ` G ) ) = ( I ` X ) ) |
| 36 | 8 24 35 | syl2anc | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( I ` X ) ( +g ` G ) ( 0g ` G ) ) = ( I ` X ) ) |
| 37 | 34 36 | breq12d | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( ( ( I ` X ) ( +g ` G ) ( X ( +g ` G ) ( I ` Y ) ) ) .< ( ( I ` X ) ( +g ` G ) ( 0g ` G ) ) <-> ( I ` Y ) .< ( I ` X ) ) ) |
| 38 | 26 37 | bitrd | |- ( ( ( G e. oGrp /\ ( oppG ` G ) e. oGrp ) /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( I ` Y ) .< ( I ` X ) ) ) |