This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | ||
| ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | ogrpaddltbi | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ogrpaddlt.0 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ogrpaddlt.1 | ⊢ < = ( lt ‘ 𝐺 ) | |
| 3 | ogrpaddlt.2 | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1 2 3 | ogrpaddlt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 < 𝑌 ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) |
| 6 | simpll | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝐺 ∈ oGrp ) | |
| 7 | ogrpgrp | ⊢ ( 𝐺 ∈ oGrp → 𝐺 ∈ Grp ) | |
| 8 | 6 7 | syl | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝐺 ∈ Grp ) |
| 9 | simplr1 | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simplr3 | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑍 ∈ 𝐵 ) | |
| 11 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 + 𝑍 ) ∈ 𝐵 ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + 𝑍 ) ∈ 𝐵 ) |
| 13 | simplr2 | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑌 ∈ 𝐵 ) | |
| 14 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 15 | 8 13 10 14 | syl3anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + 𝑍 ) ∈ 𝐵 ) |
| 16 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 17 | 1 16 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 18 | 8 10 17 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 19 | simpr | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) | |
| 20 | 1 2 3 | ogrpaddlt | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( ( 𝑋 + 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 + 𝑍 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) < ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 21 | 6 12 15 18 19 20 | syl131anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) < ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 22 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 23 | 8 9 10 18 22 | syl13anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 24 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 25 | 1 3 24 16 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 8 10 25 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 0g ‘ 𝐺 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑋 + ( 0g ‘ 𝐺 ) ) ) |
| 28 | 1 3 24 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 29 | 8 9 28 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑋 + ( 0g ‘ 𝐺 ) ) = 𝑋 ) |
| 30 | 23 27 29 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑋 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = 𝑋 ) |
| 31 | 1 3 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 32 | 8 13 10 18 31 | syl13anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) ) |
| 33 | 26 | oveq2d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + ( 𝑍 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) = ( 𝑌 + ( 0g ‘ 𝐺 ) ) ) |
| 34 | 1 3 24 | grprid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 35 | 8 13 34 | syl2anc | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( 𝑌 + ( 0g ‘ 𝐺 ) ) = 𝑌 ) |
| 36 | 32 33 35 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → ( ( 𝑌 + 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) = 𝑌 ) |
| 37 | 21 30 36 | 3brtr3d | ⊢ ( ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) → 𝑋 < 𝑌 ) |
| 38 | 5 37 | impbida | ⊢ ( ( 𝐺 ∈ oGrp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 + 𝑍 ) < ( 𝑌 + 𝑍 ) ) ) |