This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofccat.1 | ⊢ ( 𝜑 → 𝐸 ∈ Word 𝑆 ) | |
| ofccat.2 | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝑆 ) | ||
| ofccat.3 | ⊢ ( 𝜑 → 𝐺 ∈ Word 𝑇 ) | ||
| ofccat.4 | ⊢ ( 𝜑 → 𝐻 ∈ Word 𝑇 ) | ||
| ofccat.5 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐺 ) ) | ||
| ofccat.6 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐻 ) ) | ||
| Assertion | ofccat | ⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofccat.1 | ⊢ ( 𝜑 → 𝐸 ∈ Word 𝑆 ) | |
| 2 | ofccat.2 | ⊢ ( 𝜑 → 𝐹 ∈ Word 𝑆 ) | |
| 3 | ofccat.3 | ⊢ ( 𝜑 → 𝐺 ∈ Word 𝑇 ) | |
| 4 | ofccat.4 | ⊢ ( 𝜑 → 𝐻 ∈ Word 𝑇 ) | |
| 5 | ofccat.5 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐺 ) ) | |
| 6 | ofccat.6 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 𝐻 ) ) | |
| 7 | wrdf | ⊢ ( 𝐸 ∈ Word 𝑆 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑆 ) | |
| 8 | ffn | ⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ⟶ 𝑆 → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) | |
| 9 | 1 7 8 | 3syl | ⊢ ( 𝜑 → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 10 | wrdf | ⊢ ( 𝐺 ∈ Word 𝑇 → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 ) | |
| 11 | ffn | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ⟶ 𝑇 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) | |
| 12 | 3 10 11 | 3syl | ⊢ ( 𝜑 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
| 13 | 5 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
| 14 | 13 | fneq2d | ⊢ ( 𝜑 → ( 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) ) |
| 15 | 12 14 | mpbird | ⊢ ( 𝜑 → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 16 | ovexd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ) | |
| 17 | inidm | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∩ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) | |
| 18 | 9 15 16 16 17 | offn | ⊢ ( 𝜑 → ( 𝐸 ∘f 𝑅 𝐺 ) Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 19 | hashfn | ⊢ ( ( 𝐸 ∘f 𝑅 𝐺 ) Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) |
| 21 | wrdfin | ⊢ ( 𝐸 ∈ Word 𝑆 → 𝐸 ∈ Fin ) | |
| 22 | hashcl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) | |
| 23 | 1 21 22 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
| 24 | hashfzo0 | ⊢ ( ( ♯ ‘ 𝐸 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) = ( ♯ ‘ 𝐸 ) ) |
| 26 | 20 25 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 29 | 28 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) |
| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 31 | 15 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 32 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ) | |
| 33 | 29 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 34 | fnfvof | ⊢ ( ( ( 𝐸 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∧ 𝐺 Fn ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ∈ V ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) = ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) ) | |
| 35 | 30 31 32 33 34 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) = ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) ) |
| 36 | 26 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) = ( ♯ ‘ 𝐸 ) ) |
| 37 | 36 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) |
| 38 | 37 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) |
| 39 | wrdf | ⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 ) | |
| 40 | ffn | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝑆 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 41 | 2 39 40 | 3syl | ⊢ ( 𝜑 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 43 | wrdf | ⊢ ( 𝐻 ∈ Word 𝑇 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ 𝑇 ) | |
| 44 | ffn | ⊢ ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ 𝑇 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) | |
| 45 | 4 43 44 | 3syl | ⊢ ( 𝜑 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) |
| 46 | 6 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) |
| 47 | 46 | fneq2d | ⊢ ( 𝜑 → ( 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ) ) |
| 48 | 45 47 | mpbird | ⊢ ( 𝜑 → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 50 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ) | |
| 51 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) | |
| 52 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) | |
| 53 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 54 | 52 53 | neleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) |
| 55 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐸 ) ∈ ℕ0 ) |
| 56 | 55 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐸 ) ∈ ℤ ) |
| 57 | wrdfin | ⊢ ( 𝐹 ∈ Word 𝑆 → 𝐹 ∈ Fin ) | |
| 58 | hashcl | ⊢ ( 𝐹 ∈ Fin → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 59 | 2 57 58 | 3syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 60 | 59 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 61 | 60 | nn0zd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
| 62 | fzocatel | ⊢ ( ( ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ) ∧ ( ( ♯ ‘ 𝐸 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 63 | 51 54 56 61 62 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 64 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝐻 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ∧ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) | |
| 65 | 42 49 50 63 64 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
| 66 | 38 65 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) ∧ ¬ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) |
| 67 | 29 35 66 | ifbieq12d2 | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
| 68 | 67 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
| 69 | ovex | ⊢ ( 𝐸 ∘f 𝑅 𝐺 ) ∈ V | |
| 70 | ovex | ⊢ ( 𝐹 ∘f 𝑅 𝐻 ) ∈ V | |
| 71 | ccatfval | ⊢ ( ( ( 𝐸 ∘f 𝑅 𝐺 ) ∈ V ∧ ( 𝐹 ∘f 𝑅 𝐻 ) ∈ V ) → ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) | |
| 72 | 69 70 71 | mp2an | ⊢ ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) |
| 73 | ovexd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∈ V ) | |
| 74 | inidm | ⊢ ( ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∩ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 75 | 41 48 73 73 74 | offn | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐻 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 76 | hashfn | ⊢ ( ( 𝐹 ∘f 𝑅 𝐻 ) Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 77 | 75 76 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 78 | hashfzo0 | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) | |
| 79 | 59 78 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( ♯ ‘ 𝐹 ) ) |
| 80 | 77 79 | eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( ♯ ‘ 𝐹 ) ) |
| 81 | 26 80 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) = ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) |
| 82 | 81 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) |
| 83 | 82 | mpteq1d | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) + ( ♯ ‘ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) |
| 84 | 72 83 | eqtrid | ⊢ ( 𝜑 → ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) , ( ( 𝐸 ∘f 𝑅 𝐺 ) ‘ 𝑖 ) , ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ ( 𝑖 − ( ♯ ‘ ( 𝐸 ∘f 𝑅 𝐺 ) ) ) ) ) ) ) |
| 85 | ovexd | ⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ∈ V ) | |
| 86 | fvex | ⊢ ( 𝐸 ‘ 𝑖 ) ∈ V | |
| 87 | fvex | ⊢ ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ∈ V | |
| 88 | 86 87 | ifex | ⊢ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ∈ V |
| 89 | 88 | a1i | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ∈ V ) |
| 90 | fvex | ⊢ ( 𝐺 ‘ 𝑖 ) ∈ V | |
| 91 | fvex | ⊢ ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ∈ V | |
| 92 | 90 91 | ifex | ⊢ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ∈ V |
| 93 | 92 | a1i | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ∈ V ) |
| 94 | ccatfval | ⊢ ( ( 𝐸 ∈ Word 𝑆 ∧ 𝐹 ∈ Word 𝑆 ) → ( 𝐸 ++ 𝐹 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) | |
| 95 | 1 2 94 | syl2anc | ⊢ ( 𝜑 → ( 𝐸 ++ 𝐹 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
| 96 | ccatfval | ⊢ ( ( 𝐺 ∈ Word 𝑇 ∧ 𝐻 ∈ Word 𝑇 ) → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) | |
| 97 | 3 4 96 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
| 98 | 5 6 | oveq12d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) = ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) |
| 99 | 98 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ) |
| 100 | 99 | mpteq1d | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐺 ) + ( ♯ ‘ 𝐻 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
| 101 | 97 100 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 ++ 𝐻 ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
| 102 | 85 89 93 95 101 | offval2 | ⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) ) |
| 103 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( ♯ ‘ 𝐸 ) = ( ♯ ‘ 𝐺 ) ) |
| 104 | 103 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 0 ..^ ( ♯ ‘ 𝐸 ) ) = ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) |
| 105 | 104 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) ) ) |
| 106 | 103 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 − ( ♯ ‘ 𝐸 ) ) = ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) |
| 107 | 106 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) = ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) |
| 108 | 105 107 | ifbieq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) |
| 109 | 108 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ) → ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) = ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) |
| 110 | 109 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐺 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐺 ) ) ) ) ) ) ) |
| 111 | 102 110 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
| 112 | ovif12 | ⊢ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) = if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) | |
| 113 | 112 | mpteq2i | ⊢ ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ ( if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐸 ‘ 𝑖 ) , ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) 𝑅 if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( 𝐺 ‘ 𝑖 ) , ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) |
| 114 | 111 113 | eqtrdi | ⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐸 ) + ( ♯ ‘ 𝐹 ) ) ) ↦ if ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐸 ) ) , ( ( 𝐸 ‘ 𝑖 ) 𝑅 ( 𝐺 ‘ 𝑖 ) ) , ( ( 𝐹 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) 𝑅 ( 𝐻 ‘ ( 𝑖 − ( ♯ ‘ 𝐸 ) ) ) ) ) ) ) |
| 115 | 68 84 114 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝐸 ++ 𝐹 ) ∘f 𝑅 ( 𝐺 ++ 𝐻 ) ) = ( ( 𝐸 ∘f 𝑅 𝐺 ) ++ ( 𝐹 ∘f 𝑅 𝐻 ) ) ) |