This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatfval | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑆 ∈ 𝑉 → 𝑆 ∈ V ) | |
| 2 | elex | ⊢ ( 𝑇 ∈ 𝑊 → 𝑇 ∈ V ) | |
| 3 | fveq2 | ⊢ ( 𝑠 = 𝑆 → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑆 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( ♯ ‘ 𝑡 ) = ( ♯ ‘ 𝑇 ) ) | |
| 5 | 3 4 | oveqan12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) = ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ) |
| 7 | 3 | oveq2d | ⊢ ( 𝑠 = 𝑆 → ( 0 ..^ ( ♯ ‘ 𝑠 ) ) = ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ↔ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) ↔ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) ) ) |
| 10 | fveq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) ) |
| 12 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → 𝑡 = 𝑇 ) | |
| 13 | 3 | oveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 − ( ♯ ‘ 𝑠 ) ) = ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑥 − ( ♯ ‘ 𝑠 ) ) = ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) |
| 15 | 12 14 | fveq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) = ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) |
| 16 | 9 11 15 | ifbieq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) = if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) |
| 17 | 6 16 | mpteq12dv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |
| 18 | df-concat | ⊢ ++ = ( 𝑠 ∈ V , 𝑡 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑠 ) + ( ♯ ‘ 𝑡 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑠 ) ) , ( 𝑠 ‘ 𝑥 ) , ( 𝑡 ‘ ( 𝑥 − ( ♯ ‘ 𝑠 ) ) ) ) ) ) | |
| 19 | ovex | ⊢ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ∈ V | |
| 20 | 19 | mptex | ⊢ ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ∈ V |
| 21 | 17 18 20 | ovmpoa | ⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |
| 22 | 1 2 21 | syl2an | ⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊 ) → ( 𝑆 ++ 𝑇 ) = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑆 ) + ( ♯ ‘ 𝑇 ) ) ) ↦ if ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑆 ) ) , ( 𝑆 ‘ 𝑥 ) , ( 𝑇 ‘ ( 𝑥 − ( ♯ ‘ 𝑆 ) ) ) ) ) ) |