This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Letterwise operations on word concatenations. (Contributed by Thierry Arnoux, 28-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofccat.1 | |- ( ph -> E e. Word S ) |
|
| ofccat.2 | |- ( ph -> F e. Word S ) |
||
| ofccat.3 | |- ( ph -> G e. Word T ) |
||
| ofccat.4 | |- ( ph -> H e. Word T ) |
||
| ofccat.5 | |- ( ph -> ( # ` E ) = ( # ` G ) ) |
||
| ofccat.6 | |- ( ph -> ( # ` F ) = ( # ` H ) ) |
||
| Assertion | ofccat | |- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( ( E oF R G ) ++ ( F oF R H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofccat.1 | |- ( ph -> E e. Word S ) |
|
| 2 | ofccat.2 | |- ( ph -> F e. Word S ) |
|
| 3 | ofccat.3 | |- ( ph -> G e. Word T ) |
|
| 4 | ofccat.4 | |- ( ph -> H e. Word T ) |
|
| 5 | ofccat.5 | |- ( ph -> ( # ` E ) = ( # ` G ) ) |
|
| 6 | ofccat.6 | |- ( ph -> ( # ` F ) = ( # ` H ) ) |
|
| 7 | wrdf | |- ( E e. Word S -> E : ( 0 ..^ ( # ` E ) ) --> S ) |
|
| 8 | ffn | |- ( E : ( 0 ..^ ( # ` E ) ) --> S -> E Fn ( 0 ..^ ( # ` E ) ) ) |
|
| 9 | 1 7 8 | 3syl | |- ( ph -> E Fn ( 0 ..^ ( # ` E ) ) ) |
| 10 | wrdf | |- ( G e. Word T -> G : ( 0 ..^ ( # ` G ) ) --> T ) |
|
| 11 | ffn | |- ( G : ( 0 ..^ ( # ` G ) ) --> T -> G Fn ( 0 ..^ ( # ` G ) ) ) |
|
| 12 | 3 10 11 | 3syl | |- ( ph -> G Fn ( 0 ..^ ( # ` G ) ) ) |
| 13 | 5 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` G ) ) ) |
| 14 | 13 | fneq2d | |- ( ph -> ( G Fn ( 0 ..^ ( # ` E ) ) <-> G Fn ( 0 ..^ ( # ` G ) ) ) ) |
| 15 | 12 14 | mpbird | |- ( ph -> G Fn ( 0 ..^ ( # ` E ) ) ) |
| 16 | ovexd | |- ( ph -> ( 0 ..^ ( # ` E ) ) e. _V ) |
|
| 17 | inidm | |- ( ( 0 ..^ ( # ` E ) ) i^i ( 0 ..^ ( # ` E ) ) ) = ( 0 ..^ ( # ` E ) ) |
|
| 18 | 9 15 16 16 17 | offn | |- ( ph -> ( E oF R G ) Fn ( 0 ..^ ( # ` E ) ) ) |
| 19 | hashfn | |- ( ( E oF R G ) Fn ( 0 ..^ ( # ` E ) ) -> ( # ` ( E oF R G ) ) = ( # ` ( 0 ..^ ( # ` E ) ) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( # ` ( E oF R G ) ) = ( # ` ( 0 ..^ ( # ` E ) ) ) ) |
| 21 | wrdfin | |- ( E e. Word S -> E e. Fin ) |
|
| 22 | hashcl | |- ( E e. Fin -> ( # ` E ) e. NN0 ) |
|
| 23 | 1 21 22 | 3syl | |- ( ph -> ( # ` E ) e. NN0 ) |
| 24 | hashfzo0 | |- ( ( # ` E ) e. NN0 -> ( # ` ( 0 ..^ ( # ` E ) ) ) = ( # ` E ) ) |
|
| 25 | 23 24 | syl | |- ( ph -> ( # ` ( 0 ..^ ( # ` E ) ) ) = ( # ` E ) ) |
| 26 | 20 25 | eqtrd | |- ( ph -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
| 28 | 27 | oveq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( 0 ..^ ( # ` ( E oF R G ) ) ) = ( 0 ..^ ( # ` E ) ) ) |
| 29 | 28 | eleq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) <-> i e. ( 0 ..^ ( # ` E ) ) ) ) |
| 30 | 9 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> E Fn ( 0 ..^ ( # ` E ) ) ) |
| 31 | 15 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> G Fn ( 0 ..^ ( # ` E ) ) ) |
| 32 | ovexd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` E ) ) e. _V ) |
|
| 33 | 29 | biimpa | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> i e. ( 0 ..^ ( # ` E ) ) ) |
| 34 | fnfvof | |- ( ( ( E Fn ( 0 ..^ ( # ` E ) ) /\ G Fn ( 0 ..^ ( # ` E ) ) ) /\ ( ( 0 ..^ ( # ` E ) ) e. _V /\ i e. ( 0 ..^ ( # ` E ) ) ) ) -> ( ( E oF R G ) ` i ) = ( ( E ` i ) R ( G ` i ) ) ) |
|
| 35 | 30 31 32 33 34 | syl22anc | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( E oF R G ) ` i ) = ( ( E ` i ) R ( G ` i ) ) ) |
| 36 | 26 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` ( E oF R G ) ) = ( # ` E ) ) |
| 37 | 36 | oveq2d | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( i - ( # ` ( E oF R G ) ) ) = ( i - ( # ` E ) ) ) |
| 38 | 37 | fveq2d | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) = ( ( F oF R H ) ` ( i - ( # ` E ) ) ) ) |
| 39 | wrdf | |- ( F e. Word S -> F : ( 0 ..^ ( # ` F ) ) --> S ) |
|
| 40 | ffn | |- ( F : ( 0 ..^ ( # ` F ) ) --> S -> F Fn ( 0 ..^ ( # ` F ) ) ) |
|
| 41 | 2 39 40 | 3syl | |- ( ph -> F Fn ( 0 ..^ ( # ` F ) ) ) |
| 42 | 41 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> F Fn ( 0 ..^ ( # ` F ) ) ) |
| 43 | wrdf | |- ( H e. Word T -> H : ( 0 ..^ ( # ` H ) ) --> T ) |
|
| 44 | ffn | |- ( H : ( 0 ..^ ( # ` H ) ) --> T -> H Fn ( 0 ..^ ( # ` H ) ) ) |
|
| 45 | 4 43 44 | 3syl | |- ( ph -> H Fn ( 0 ..^ ( # ` H ) ) ) |
| 46 | 6 | oveq2d | |- ( ph -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ ( # ` H ) ) ) |
| 47 | 46 | fneq2d | |- ( ph -> ( H Fn ( 0 ..^ ( # ` F ) ) <-> H Fn ( 0 ..^ ( # ` H ) ) ) ) |
| 48 | 45 47 | mpbird | |- ( ph -> H Fn ( 0 ..^ ( # ` F ) ) ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> H Fn ( 0 ..^ ( # ` F ) ) ) |
| 50 | ovexd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` F ) ) e. _V ) |
|
| 51 | simplr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) |
|
| 52 | simpr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) |
|
| 53 | 28 | adantr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( 0 ..^ ( # ` ( E oF R G ) ) ) = ( 0 ..^ ( # ` E ) ) ) |
| 54 | 52 53 | neleqtrd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> -. i e. ( 0 ..^ ( # ` E ) ) ) |
| 55 | 23 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` E ) e. NN0 ) |
| 56 | 55 | nn0zd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` E ) e. ZZ ) |
| 57 | wrdfin | |- ( F e. Word S -> F e. Fin ) |
|
| 58 | hashcl | |- ( F e. Fin -> ( # ` F ) e. NN0 ) |
|
| 59 | 2 57 58 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 60 | 59 | ad2antrr | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` F ) e. NN0 ) |
| 61 | 60 | nn0zd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( # ` F ) e. ZZ ) |
| 62 | fzocatel | |- ( ( ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) /\ -. i e. ( 0 ..^ ( # ` E ) ) ) /\ ( ( # ` E ) e. ZZ /\ ( # ` F ) e. ZZ ) ) -> ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) |
|
| 63 | 51 54 56 61 62 | syl22anc | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) |
| 64 | fnfvof | |- ( ( ( F Fn ( 0 ..^ ( # ` F ) ) /\ H Fn ( 0 ..^ ( # ` F ) ) ) /\ ( ( 0 ..^ ( # ` F ) ) e. _V /\ ( i - ( # ` E ) ) e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` E ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
|
| 65 | 42 49 50 63 64 | syl22anc | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` E ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
| 66 | 38 65 | eqtrd | |- ( ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) /\ -. i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) ) -> ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) = ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
| 67 | 29 35 66 | ifbieq12d2 | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) = if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) |
| 68 | 67 | mpteq2dva | |- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
| 69 | ovex | |- ( E oF R G ) e. _V |
|
| 70 | ovex | |- ( F oF R H ) e. _V |
|
| 71 | ccatfval | |- ( ( ( E oF R G ) e. _V /\ ( F oF R H ) e. _V ) -> ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
|
| 72 | 69 70 71 | mp2an | |- ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) |
| 73 | ovexd | |- ( ph -> ( 0 ..^ ( # ` F ) ) e. _V ) |
|
| 74 | inidm | |- ( ( 0 ..^ ( # ` F ) ) i^i ( 0 ..^ ( # ` F ) ) ) = ( 0 ..^ ( # ` F ) ) |
|
| 75 | 41 48 73 73 74 | offn | |- ( ph -> ( F oF R H ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 76 | hashfn | |- ( ( F oF R H ) Fn ( 0 ..^ ( # ` F ) ) -> ( # ` ( F oF R H ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
|
| 77 | 75 76 | syl | |- ( ph -> ( # ` ( F oF R H ) ) = ( # ` ( 0 ..^ ( # ` F ) ) ) ) |
| 78 | hashfzo0 | |- ( ( # ` F ) e. NN0 -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
|
| 79 | 59 78 | syl | |- ( ph -> ( # ` ( 0 ..^ ( # ` F ) ) ) = ( # ` F ) ) |
| 80 | 77 79 | eqtrd | |- ( ph -> ( # ` ( F oF R H ) ) = ( # ` F ) ) |
| 81 | 26 80 | oveq12d | |- ( ph -> ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) = ( ( # ` E ) + ( # ` F ) ) ) |
| 82 | 81 | oveq2d | |- ( ph -> ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) = ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) |
| 83 | 82 | mpteq1d | |- ( ph -> ( i e. ( 0 ..^ ( ( # ` ( E oF R G ) ) + ( # ` ( F oF R H ) ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
| 84 | 72 83 | eqtrid | |- ( ph -> ( ( E oF R G ) ++ ( F oF R H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` ( E oF R G ) ) ) , ( ( E oF R G ) ` i ) , ( ( F oF R H ) ` ( i - ( # ` ( E oF R G ) ) ) ) ) ) ) |
| 85 | ovexd | |- ( ph -> ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) e. _V ) |
|
| 86 | fvex | |- ( E ` i ) e. _V |
|
| 87 | fvex | |- ( F ` ( i - ( # ` E ) ) ) e. _V |
|
| 88 | 86 87 | ifex | |- if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) e. _V |
| 89 | 88 | a1i | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) e. _V ) |
| 90 | fvex | |- ( G ` i ) e. _V |
|
| 91 | fvex | |- ( H ` ( i - ( # ` G ) ) ) e. _V |
|
| 92 | 90 91 | ifex | |- if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) e. _V |
| 93 | 92 | a1i | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) e. _V ) |
| 94 | ccatfval | |- ( ( E e. Word S /\ F e. Word S ) -> ( E ++ F ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) ) ) |
|
| 95 | 1 2 94 | syl2anc | |- ( ph -> ( E ++ F ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) ) ) |
| 96 | ccatfval | |- ( ( G e. Word T /\ H e. Word T ) -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
|
| 97 | 3 4 96 | syl2anc | |- ( ph -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
| 98 | 5 6 | oveq12d | |- ( ph -> ( ( # ` E ) + ( # ` F ) ) = ( ( # ` G ) + ( # ` H ) ) ) |
| 99 | 98 | oveq2d | |- ( ph -> ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) = ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) ) |
| 100 | 99 | mpteq1d | |- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` G ) + ( # ` H ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
| 101 | 97 100 | eqtr4d | |- ( ph -> ( G ++ H ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
| 102 | 85 89 93 95 101 | offval2 | |- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) ) |
| 103 | 5 | adantr | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( # ` E ) = ( # ` G ) ) |
| 104 | 103 | oveq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( 0 ..^ ( # ` E ) ) = ( 0 ..^ ( # ` G ) ) ) |
| 105 | 104 | eleq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i e. ( 0 ..^ ( # ` E ) ) <-> i e. ( 0 ..^ ( # ` G ) ) ) ) |
| 106 | 103 | oveq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( i - ( # ` E ) ) = ( i - ( # ` G ) ) ) |
| 107 | 106 | fveq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( H ` ( i - ( # ` E ) ) ) = ( H ` ( i - ( # ` G ) ) ) ) |
| 108 | 105 107 | ifbieq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) = if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) |
| 109 | 108 | oveq2d | |- ( ( ph /\ i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) ) -> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) = ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) |
| 110 | 109 | mpteq2dva | |- ( ph -> ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` G ) ) , ( G ` i ) , ( H ` ( i - ( # ` G ) ) ) ) ) ) ) |
| 111 | 102 110 | eqtr4d | |- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
| 112 | ovif12 | |- ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) = if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) |
|
| 113 | 112 | mpteq2i | |- ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> ( if ( i e. ( 0 ..^ ( # ` E ) ) , ( E ` i ) , ( F ` ( i - ( # ` E ) ) ) ) R if ( i e. ( 0 ..^ ( # ` E ) ) , ( G ` i ) , ( H ` ( i - ( # ` E ) ) ) ) ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) |
| 114 | 111 113 | eqtrdi | |- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( i e. ( 0 ..^ ( ( # ` E ) + ( # ` F ) ) ) |-> if ( i e. ( 0 ..^ ( # ` E ) ) , ( ( E ` i ) R ( G ` i ) ) , ( ( F ` ( i - ( # ` E ) ) ) R ( H ` ( i - ( # ` E ) ) ) ) ) ) ) |
| 115 | 68 84 114 | 3eqtr4rd | |- ( ph -> ( ( E ++ F ) oF R ( G ++ H ) ) = ( ( E oF R G ) ++ ( F oF R H ) ) ) |