This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Letterwise operations on a single letter word. (Contributed by Thierry Arnoux, 7-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ofs1 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( 〈“ 𝐴 ”〉 ∘f 𝑅 〈“ 𝐵 ”〉 ) = 〈“ ( 𝐴 𝑅 𝐵 ) ”〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex | ⊢ { 0 } ∈ V | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → { 0 } ∈ V ) |
| 3 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ∧ 𝑖 ∈ { 0 } ) → 𝐴 ∈ 𝑆 ) | |
| 4 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) ∧ 𝑖 ∈ { 0 } ) → 𝐵 ∈ 𝑇 ) | |
| 5 | s1val | ⊢ ( 𝐴 ∈ 𝑆 → 〈“ 𝐴 ”〉 = { 〈 0 , 𝐴 〉 } ) | |
| 6 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 7 | fmptsn | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝐴 ∈ 𝑆 ) → { 〈 0 , 𝐴 〉 } = ( 𝑖 ∈ { 0 } ↦ 𝐴 ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ 𝑆 → { 〈 0 , 𝐴 〉 } = ( 𝑖 ∈ { 0 } ↦ 𝐴 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝐴 ∈ 𝑆 → 〈“ 𝐴 ”〉 = ( 𝑖 ∈ { 0 } ↦ 𝐴 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → 〈“ 𝐴 ”〉 = ( 𝑖 ∈ { 0 } ↦ 𝐴 ) ) |
| 11 | s1val | ⊢ ( 𝐵 ∈ 𝑇 → 〈“ 𝐵 ”〉 = { 〈 0 , 𝐵 〉 } ) | |
| 12 | fmptsn | ⊢ ( ( 0 ∈ ℕ0 ∧ 𝐵 ∈ 𝑇 ) → { 〈 0 , 𝐵 〉 } = ( 𝑖 ∈ { 0 } ↦ 𝐵 ) ) | |
| 13 | 6 12 | mpan | ⊢ ( 𝐵 ∈ 𝑇 → { 〈 0 , 𝐵 〉 } = ( 𝑖 ∈ { 0 } ↦ 𝐵 ) ) |
| 14 | 11 13 | eqtrd | ⊢ ( 𝐵 ∈ 𝑇 → 〈“ 𝐵 ”〉 = ( 𝑖 ∈ { 0 } ↦ 𝐵 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → 〈“ 𝐵 ”〉 = ( 𝑖 ∈ { 0 } ↦ 𝐵 ) ) |
| 16 | 2 3 4 10 15 | offval2 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( 〈“ 𝐴 ”〉 ∘f 𝑅 〈“ 𝐵 ”〉 ) = ( 𝑖 ∈ { 0 } ↦ ( 𝐴 𝑅 𝐵 ) ) ) |
| 17 | ovex | ⊢ ( 𝐴 𝑅 𝐵 ) ∈ V | |
| 18 | s1val | ⊢ ( ( 𝐴 𝑅 𝐵 ) ∈ V → 〈“ ( 𝐴 𝑅 𝐵 ) ”〉 = { 〈 0 , ( 𝐴 𝑅 𝐵 ) 〉 } ) | |
| 19 | 17 18 | ax-mp | ⊢ 〈“ ( 𝐴 𝑅 𝐵 ) ”〉 = { 〈 0 , ( 𝐴 𝑅 𝐵 ) 〉 } |
| 20 | fmptsn | ⊢ ( ( 0 ∈ ℕ0 ∧ ( 𝐴 𝑅 𝐵 ) ∈ V ) → { 〈 0 , ( 𝐴 𝑅 𝐵 ) 〉 } = ( 𝑖 ∈ { 0 } ↦ ( 𝐴 𝑅 𝐵 ) ) ) | |
| 21 | 6 17 20 | mp2an | ⊢ { 〈 0 , ( 𝐴 𝑅 𝐵 ) 〉 } = ( 𝑖 ∈ { 0 } ↦ ( 𝐴 𝑅 𝐵 ) ) |
| 22 | 19 21 | eqtri | ⊢ 〈“ ( 𝐴 𝑅 𝐵 ) ”〉 = ( 𝑖 ∈ { 0 } ↦ ( 𝐴 𝑅 𝐵 ) ) |
| 23 | 16 22 | eqtr4di | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑇 ) → ( 〈“ 𝐴 ”〉 ∘f 𝑅 〈“ 𝐵 ”〉 ) = 〈“ ( 𝐴 𝑅 𝐵 ) ”〉 ) |