This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for oeoe . (Contributed by Eric Schmidt, 26-May-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oeoelem.1 | ⊢ 𝐴 ∈ On | |
| oeoelem.2 | ⊢ ∅ ∈ 𝐴 | ||
| Assertion | oeoelem | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oeoelem.1 | ⊢ 𝐴 ∈ On | |
| 2 | oeoelem.2 | ⊢ ∅ ∈ 𝐴 | |
| 3 | oveq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) ) | |
| 4 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o ∅ ) ) | |
| 5 | 4 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝑦 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 11 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) ) | |
| 12 | oveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o suc 𝑦 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) ) | |
| 16 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ·o 𝑥 ) = ( 𝐵 ·o 𝐶 ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 19 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 20 | 1 19 | mpan | ⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 21 | oe0 | ⊢ ( ( 𝐴 ↑o 𝐵 ) ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = 1o ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = 1o ) |
| 23 | om0 | ⊢ ( 𝐵 ∈ On → ( 𝐵 ·o ∅ ) = ∅ ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) = ( 𝐴 ↑o ∅ ) ) |
| 25 | oe0 | ⊢ ( 𝐴 ∈ On → ( 𝐴 ↑o ∅ ) = 1o ) | |
| 26 | 1 25 | ax-mp | ⊢ ( 𝐴 ↑o ∅ ) = 1o |
| 27 | 24 26 | eqtrdi | ⊢ ( 𝐵 ∈ On → ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) = 1o ) |
| 28 | 22 27 | eqtr4d | ⊢ ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o ∅ ) = ( 𝐴 ↑o ( 𝐵 ·o ∅ ) ) ) |
| 29 | oveq1 | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) | |
| 30 | oesuc | ⊢ ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) ) | |
| 31 | 20 30 | sylan | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
| 32 | omsuc | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o suc 𝑦 ) = ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) | |
| 33 | 32 | oveq2d | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) = ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) ) |
| 34 | omcl | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐵 ·o 𝑦 ) ∈ On ) | |
| 35 | oeoa | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) | |
| 36 | 1 35 | mp3an1 | ⊢ ( ( ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
| 37 | 34 36 | sylan | ⊢ ( ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
| 38 | 37 | anabss1 | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( ( 𝐵 ·o 𝑦 ) +o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
| 39 | 33 38 | eqtrd | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) |
| 40 | 31 39 | eqeq12d | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ↔ ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ·o ( 𝐴 ↑o 𝐵 ) ) = ( ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ·o ( 𝐴 ↑o 𝐵 ) ) ) ) |
| 41 | 29 40 | imbitrrid | ⊢ ( ( 𝐵 ∈ On ∧ 𝑦 ∈ On ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) |
| 42 | 41 | expcom | ⊢ ( 𝑦 ∈ On → ( 𝐵 ∈ On → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o suc 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o suc 𝑦 ) ) ) ) ) |
| 43 | iuneq2 | ⊢ ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) | |
| 44 | vex | ⊢ 𝑥 ∈ V | |
| 45 | oen0 | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 46 | 2 45 | mpan2 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 47 | oelim | ⊢ ( ( ( ( 𝐴 ↑o 𝐵 ) ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) | |
| 48 | 19 47 | sylanl1 | ⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) ∧ ∅ ∈ ( 𝐴 ↑o 𝐵 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
| 49 | 46 48 | mpidan | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
| 50 | 1 49 | mpanl1 | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
| 51 | 44 50 | mpanr1 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) ) |
| 52 | omlim | ⊢ ( ( 𝐵 ∈ On ∧ ( 𝑥 ∈ V ∧ Lim 𝑥 ) ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) | |
| 53 | 44 52 | mpanr1 | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐵 ·o 𝑥 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) |
| 54 | 53 | oveq2d | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) ) |
| 55 | limord | ⊢ ( Lim 𝑥 → Ord 𝑥 ) | |
| 56 | ordelon | ⊢ ( ( Ord 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) | |
| 57 | 55 56 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 58 | 57 34 | sylan2 | ⊢ ( ( 𝐵 ∈ On ∧ ( Lim 𝑥 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
| 59 | 58 | anassrs | ⊢ ( ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐵 ·o 𝑦 ) ∈ On ) |
| 60 | 59 | ralrimiva | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ∀ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ∈ On ) |
| 61 | 0ellim | ⊢ ( Lim 𝑥 → ∅ ∈ 𝑥 ) | |
| 62 | 61 | ne0d | ⊢ ( Lim 𝑥 → 𝑥 ≠ ∅ ) |
| 63 | 62 | adantl | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → 𝑥 ≠ ∅ ) |
| 64 | vex | ⊢ 𝑤 ∈ V | |
| 65 | oelim | ⊢ ( ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) ∧ ∅ ∈ 𝐴 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) | |
| 66 | 2 65 | mpan2 | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑤 ∈ V ∧ Lim 𝑤 ) ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 67 | 1 66 | mpan | ⊢ ( ( 𝑤 ∈ V ∧ Lim 𝑤 ) → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 68 | 64 67 | mpan | ⊢ ( Lim 𝑤 → ( 𝐴 ↑o 𝑤 ) = ∪ 𝑧 ∈ 𝑤 ( 𝐴 ↑o 𝑧 ) ) |
| 69 | oewordi | ⊢ ( ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) | |
| 70 | 2 69 | mpan2 | ⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
| 71 | 1 70 | mp3an3 | ⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ⊆ 𝑤 → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) ) |
| 72 | 71 | 3impia | ⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ∧ 𝑧 ⊆ 𝑤 ) → ( 𝐴 ↑o 𝑧 ) ⊆ ( 𝐴 ↑o 𝑤 ) ) |
| 73 | 68 72 | onoviun | ⊢ ( ( 𝑥 ∈ V ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ∈ On ∧ 𝑥 ≠ ∅ ) → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
| 74 | 44 60 63 73 | mp3an2i | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ∪ 𝑦 ∈ 𝑥 ( 𝐵 ·o 𝑦 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
| 75 | 54 74 | eqtrd | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) |
| 76 | 51 75 | eqeq12d | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ↔ ∪ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) ) ) |
| 77 | 43 76 | imbitrrid | ⊢ ( ( 𝐵 ∈ On ∧ Lim 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ) ) |
| 78 | 77 | expcom | ⊢ ( Lim 𝑥 → ( 𝐵 ∈ On → ( ∀ 𝑦 ∈ 𝑥 ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑦 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑦 ) ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝑥 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝑥 ) ) ) ) ) |
| 79 | 6 10 14 18 28 42 78 | tfinds3 | ⊢ ( 𝐶 ∈ On → ( 𝐵 ∈ On → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) ) |
| 80 | 79 | impcom | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐴 ↑o 𝐵 ) ↑o 𝐶 ) = ( 𝐴 ↑o ( 𝐵 ·o 𝐶 ) ) ) |