This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A variant of onovuni with indexed unions. (Contributed by Eric Schmidt, 26-May-2009) (Proof shortened by Mario Carneiro, 5-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | onovuni.1 | ⊢ ( Lim 𝑦 → ( 𝐴 𝐹 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐴 𝐹 𝑥 ) ) | |
| onovuni.2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐴 𝐹 𝑥 ) ⊆ ( 𝐴 𝐹 𝑦 ) ) | ||
| Assertion | onoviun | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑧 ∈ 𝐾 𝐿 ) = ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onovuni.1 | ⊢ ( Lim 𝑦 → ( 𝐴 𝐹 𝑦 ) = ∪ 𝑥 ∈ 𝑦 ( 𝐴 𝐹 𝑥 ) ) | |
| 2 | onovuni.2 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦 ) → ( 𝐴 𝐹 𝑥 ) ⊆ ( 𝐴 𝐹 𝑦 ) ) | |
| 3 | dfiun3g | ⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∪ 𝑧 ∈ 𝐾 𝐿 = ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) |
| 5 | 4 | oveq2d | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑧 ∈ 𝐾 𝐿 ) = ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) ) |
| 6 | simp1 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → 𝐾 ∈ 𝑇 ) | |
| 7 | mptexg | ⊢ ( 𝐾 ∈ 𝑇 → ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) | |
| 8 | rnexg | ⊢ ( ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) | |
| 9 | 6 7 8 | 3syl | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ) |
| 10 | simp2 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ) | |
| 11 | eqid | ⊢ ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) | |
| 12 | 11 | fmpt | ⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ↔ ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) : 𝐾 ⟶ On ) |
| 13 | 10 12 | sylib | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) : 𝐾 ⟶ On ) |
| 14 | 13 | frnd | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ⊆ On ) |
| 15 | dmmptg | ⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = 𝐾 ) | |
| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = 𝐾 ) |
| 17 | simp3 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → 𝐾 ≠ ∅ ) | |
| 18 | 16 17 | eqnetrd | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
| 19 | dm0rn0 | ⊢ ( dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ∅ ↔ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) = ∅ ) | |
| 20 | 19 | necon3bii | ⊢ ( dom ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ↔ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
| 21 | 18 20 | sylib | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) |
| 22 | 1 2 | onovuni | ⊢ ( ( ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ∈ V ∧ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ⊆ On ∧ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ≠ ∅ ) → ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) = ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ) |
| 23 | 9 14 21 22 | syl3anc | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ) = ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ) |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝐿 → ( 𝐴 𝐹 𝑥 ) = ( 𝐴 𝐹 𝐿 ) ) | |
| 25 | 24 | eleq2d | ⊢ ( 𝑥 = 𝐿 → ( 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
| 26 | 11 25 | rexrnmptw | ⊢ ( ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On → ( ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) ) |
| 28 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ↔ ∃ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) 𝑤 ∈ ( 𝐴 𝐹 𝑥 ) ) | |
| 29 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ↔ ∃ 𝑧 ∈ 𝐾 𝑤 ∈ ( 𝐴 𝐹 𝐿 ) ) | |
| 30 | 27 28 29 | 3bitr4g | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝑤 ∈ ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) ↔ 𝑤 ∈ ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) ) |
| 31 | 30 | eqrdv | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ∪ 𝑥 ∈ ran ( 𝑧 ∈ 𝐾 ↦ 𝐿 ) ( 𝐴 𝐹 𝑥 ) = ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) |
| 32 | 5 23 31 | 3eqtrd | ⊢ ( ( 𝐾 ∈ 𝑇 ∧ ∀ 𝑧 ∈ 𝐾 𝐿 ∈ On ∧ 𝐾 ≠ ∅ ) → ( 𝐴 𝐹 ∪ 𝑧 ∈ 𝐾 𝐿 ) = ∪ 𝑧 ∈ 𝐾 ( 𝐴 𝐹 𝐿 ) ) |