This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| oduoppcbas.d | ⊢ ( 𝜑 → 𝐷 = ( ProsetToCat ‘ ( ODual ‘ 𝐾 ) ) ) | ||
| oduoppcbas.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| oduoppcciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| oduoppcciso.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | ||
| oduoppcciso.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝑈 ) | ||
| Assertion | oduoppcciso | ⊢ ( 𝜑 → 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ 𝑈 ) ) 𝑂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | oduoppcbas.d | ⊢ ( 𝜑 → 𝐷 = ( ProsetToCat ‘ ( ODual ‘ 𝐾 ) ) ) | |
| 4 | oduoppcbas.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | oduoppcciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 6 | oduoppcciso.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑈 ) | |
| 7 | oduoppcciso.o | ⊢ ( 𝜑 → 𝑂 ∈ 𝑈 ) | |
| 8 | eqid | ⊢ ( CatCat ‘ 𝑈 ) = ( CatCat ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 11 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 12 | eqid | ⊢ ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) | |
| 13 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
| 14 | 13 | oduprs | ⊢ ( 𝐾 ∈ Proset → ( ODual ‘ 𝐾 ) ∈ Proset ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Proset ) |
| 16 | 3 15 | prstcthin | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) |
| 17 | 1 2 | prstcthin | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 18 | 4 | oppcthin | ⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝑂 ∈ ThinCat ) |
| 20 | f1oi | ⊢ ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) | |
| 21 | 1 2 3 4 | oduoppcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝑂 ) ) |
| 22 | 21 | f1oeq3d | ⊢ ( 𝜑 → ( ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝐷 ) ↔ ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝑂 ) ) ) |
| 23 | 20 22 | mpbii | ⊢ ( 𝜑 → ( I ↾ ( Base ‘ 𝐷 ) ) : ( Base ‘ 𝐷 ) –1-1-onto→ ( Base ‘ 𝑂 ) ) |
| 24 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 25 | eqid | ⊢ ( le ‘ ( ODual ‘ 𝐾 ) ) = ( le ‘ ( ODual ‘ 𝐾 ) ) | |
| 26 | 13 24 25 | oduleg | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( 𝑥 ( le ‘ ( ODual ‘ 𝐾 ) ) 𝑦 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( le ‘ ( ODual ‘ 𝐾 ) ) 𝑦 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 28 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐷 = ( ProsetToCat ‘ ( ODual ‘ 𝐾 ) ) ) |
| 29 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐾 ∈ Proset ) |
| 30 | 29 14 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ODual ‘ 𝐾 ) ∈ Proset ) |
| 31 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( le ‘ ( ODual ‘ 𝐾 ) ) = ( le ‘ ( ODual ‘ 𝐾 ) ) ) | |
| 32 | 28 30 31 | prstcleval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( le ‘ ( ODual ‘ 𝐾 ) ) = ( le ‘ 𝐷 ) ) |
| 33 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) ) | |
| 34 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐷 ) ) | |
| 35 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) ) | |
| 36 | 28 30 32 33 34 35 | prstchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑥 ( le ‘ ( ODual ‘ 𝐾 ) ) 𝑦 ↔ ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ≠ ∅ ) ) |
| 37 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) |
| 38 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) ) | |
| 39 | 37 29 38 | prstcleval | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( le ‘ 𝐾 ) = ( le ‘ 𝐶 ) ) |
| 40 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) ) | |
| 41 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 42 | 4 41 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 43 | 21 42 | eqtr4di | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐶 ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐶 ) ) |
| 45 | 35 44 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 46 | 34 44 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 47 | 37 29 39 40 45 46 | prstchom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( le ‘ 𝐾 ) 𝑥 ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) |
| 48 | 27 36 47 | 3bitr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) ≠ ∅ ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ≠ ∅ ) ) |
| 49 | 48 | necon4bid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ∅ ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ∅ ) ) |
| 50 | fvresi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝐷 ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) = 𝑥 ) | |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) = 𝑥 ) |
| 52 | fvresi | ⊢ ( 𝑦 ∈ ( Base ‘ 𝐷 ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) = 𝑦 ) | |
| 53 | 52 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) = 𝑦 ) |
| 54 | 51 53 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝑂 ) ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) = ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 55 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 56 | 55 4 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 57 | 54 56 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝑂 ) ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 58 | 57 | eqeq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝑂 ) ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) = ∅ ↔ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) = ∅ ) ) |
| 59 | 49 58 | bitr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐷 ) ∧ 𝑦 ∈ ( Base ‘ 𝐷 ) ) ) → ( ( 𝑥 ( Hom ‘ 𝐷 ) 𝑦 ) = ∅ ↔ ( ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑥 ) ( Hom ‘ 𝑂 ) ( ( I ↾ ( Base ‘ 𝐷 ) ) ‘ 𝑦 ) ) = ∅ ) ) |
| 60 | 8 9 10 11 12 5 6 7 16 19 23 59 | thinccisod | ⊢ ( 𝜑 → 𝐷 ( ≃𝑐 ‘ ( CatCat ‘ 𝑈 ) ) 𝑂 ) |