This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oppcthin.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| Assertion | oppcthin | ⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcthin.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 3 | 1 2 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 4 | 3 | a1i | ⊢ ( 𝐶 ∈ ThinCat → ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) ) |
| 5 | eqidd | ⊢ ( 𝐶 ∈ ThinCat → ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 ) ) | |
| 6 | simpl | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ ThinCat ) | |
| 7 | simprr | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 8 | simprl | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 10 | 6 7 8 2 9 | thincmo | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 11 | 9 1 | oppchom | ⊢ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) |
| 12 | 11 | eleq2i | ⊢ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ↔ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 13 | 12 | mobii | ⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 14 | 10 13 | sylibr | ⊢ ( ( 𝐶 ∈ ThinCat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝑂 ) 𝑦 ) ) |
| 15 | thincc | ⊢ ( 𝐶 ∈ ThinCat → 𝐶 ∈ Cat ) | |
| 16 | 1 | oppccat | ⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
| 17 | 15 16 | syl | ⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ Cat ) |
| 18 | 4 5 14 17 | isthincd | ⊢ ( 𝐶 ∈ ThinCat → 𝑂 ∈ ThinCat ) |