This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| Assertion | prstcthin | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) ) | |
| 4 | eqidd | ⊢ ( 𝜑 → ( le ‘ 𝐶 ) = ( le ‘ 𝐶 ) ) | |
| 5 | 1 2 4 | prstchomval | ⊢ ( 𝜑 → ( ( le ‘ 𝐶 ) × { 1o } ) = ( Hom ‘ 𝐶 ) ) |
| 6 | ovex | ⊢ ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ∈ V | |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | ccoid | ⊢ comp = Slot ( comp ‘ ndx ) | |
| 9 | 8 | setsid | ⊢ ( ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) ∈ V ∧ ∅ ∈ V ) → ∅ = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
| 10 | 6 7 9 | mp2an | ⊢ ∅ = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 11 | 1 2 | prstcval | ⊢ ( 𝜑 → 𝐶 = ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝜑 → ( comp ‘ 𝐶 ) = ( comp ‘ ( ( 𝐾 sSet 〈 ( Hom ‘ ndx ) , ( ( le ‘ 𝐾 ) × { 1o } ) 〉 ) sSet 〈 ( comp ‘ ndx ) , ∅ 〉 ) ) ) |
| 13 | 10 12 | eqtr4id | ⊢ ( 𝜑 → ∅ = ( comp ‘ 𝐶 ) ) |
| 14 | 1 2 | prstcprs | ⊢ ( 𝜑 → 𝐶 ∈ Proset ) |
| 15 | 3 5 13 4 14 | prsthinc | ⊢ ( 𝜑 → ( 𝐶 ∈ ThinCat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ∅ ) ) ) |
| 16 | 15 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |