This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Truth of the less-equal relation in an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | ||
| oduleg.g | ⊢ 𝐺 = ( le ‘ 𝐷 ) | ||
| Assertion | oduleg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝐺 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | oduval.l | ⊢ ≤ = ( le ‘ 𝑂 ) | |
| 3 | oduleg.g | ⊢ 𝐺 = ( le ‘ 𝐷 ) | |
| 4 | 1 2 | oduleval | ⊢ ◡ ≤ = ( le ‘ 𝐷 ) |
| 5 | 3 4 | eqtr4i | ⊢ 𝐺 = ◡ ≤ |
| 6 | 5 | breqi | ⊢ ( 𝐴 𝐺 𝐵 ↔ 𝐴 ◡ ≤ 𝐵 ) |
| 7 | brcnvg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ◡ ≤ 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) | |
| 8 | 6 7 | bitrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 𝐺 𝐵 ↔ 𝐵 ≤ 𝐴 ) ) |