This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dual of a preordered set and the opposite category have the same set of objects. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | ||
| oduoppcbas.d | ⊢ ( 𝜑 → 𝐷 = ( ProsetToCat ‘ ( ODual ‘ 𝐾 ) ) ) | ||
| oduoppcbas.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | ||
| Assertion | oduoppcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | ⊢ ( 𝜑 → 𝐶 = ( ProsetToCat ‘ 𝐾 ) ) | |
| 2 | prstcnid.k | ⊢ ( 𝜑 → 𝐾 ∈ Proset ) | |
| 3 | oduoppcbas.d | ⊢ ( 𝜑 → 𝐷 = ( ProsetToCat ‘ ( ODual ‘ 𝐾 ) ) ) | |
| 4 | oduoppcbas.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( ODual ‘ 𝐾 ) = ( ODual ‘ 𝐾 ) | |
| 6 | 5 | oduprs | ⊢ ( 𝐾 ∈ Proset → ( ODual ‘ 𝐾 ) ∈ Proset ) |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( ODual ‘ 𝐾 ) ∈ Proset ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 9 | 5 8 | odubas | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ ( ODual ‘ 𝐾 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( ODual ‘ 𝐾 ) ) ) |
| 11 | 3 7 10 | prstcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐷 ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐾 ) ) |
| 13 | 1 2 12 | prstcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐶 ) ) |
| 14 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 15 | 4 14 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 16 | 13 15 | eqtrdi | ⊢ ( 𝜑 → ( Base ‘ 𝐷 ) = ( Base ‘ 𝑂 ) ) |