This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dual of a preordered set and the opposite category are category-isomorphic. Example 3.6(1) of Adamek p. 25. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| prstcnid.k | |- ( ph -> K e. Proset ) |
||
| oduoppcbas.d | |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
||
| oduoppcbas.o | |- O = ( oppCat ` C ) |
||
| oduoppcciso.u | |- ( ph -> U e. V ) |
||
| oduoppcciso.d | |- ( ph -> D e. U ) |
||
| oduoppcciso.o | |- ( ph -> O e. U ) |
||
| Assertion | oduoppcciso | |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prstcnid.c | |- ( ph -> C = ( ProsetToCat ` K ) ) |
|
| 2 | prstcnid.k | |- ( ph -> K e. Proset ) |
|
| 3 | oduoppcbas.d | |- ( ph -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
|
| 4 | oduoppcbas.o | |- O = ( oppCat ` C ) |
|
| 5 | oduoppcciso.u | |- ( ph -> U e. V ) |
|
| 6 | oduoppcciso.d | |- ( ph -> D e. U ) |
|
| 7 | oduoppcciso.o | |- ( ph -> O e. U ) |
|
| 8 | eqid | |- ( CatCat ` U ) = ( CatCat ` U ) |
|
| 9 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 10 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 11 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 12 | eqid | |- ( Hom ` O ) = ( Hom ` O ) |
|
| 13 | eqid | |- ( ODual ` K ) = ( ODual ` K ) |
|
| 14 | 13 | oduprs | |- ( K e. Proset -> ( ODual ` K ) e. Proset ) |
| 15 | 2 14 | syl | |- ( ph -> ( ODual ` K ) e. Proset ) |
| 16 | 3 15 | prstcthin | |- ( ph -> D e. ThinCat ) |
| 17 | 1 2 | prstcthin | |- ( ph -> C e. ThinCat ) |
| 18 | 4 | oppcthin | |- ( C e. ThinCat -> O e. ThinCat ) |
| 19 | 17 18 | syl | |- ( ph -> O e. ThinCat ) |
| 20 | f1oi | |- ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) |
|
| 21 | 1 2 3 4 | oduoppcbas | |- ( ph -> ( Base ` D ) = ( Base ` O ) ) |
| 22 | 21 | f1oeq3d | |- ( ph -> ( ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` D ) <-> ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` O ) ) ) |
| 23 | 20 22 | mpbii | |- ( ph -> ( _I |` ( Base ` D ) ) : ( Base ` D ) -1-1-onto-> ( Base ` O ) ) |
| 24 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 25 | eqid | |- ( le ` ( ODual ` K ) ) = ( le ` ( ODual ` K ) ) |
|
| 26 | 13 24 25 | oduleg | |- ( ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) -> ( x ( le ` ( ODual ` K ) ) y <-> y ( le ` K ) x ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( le ` ( ODual ` K ) ) y <-> y ( le ` K ) x ) ) |
| 28 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> D = ( ProsetToCat ` ( ODual ` K ) ) ) |
| 29 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> K e. Proset ) |
| 30 | 29 14 | syl | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ODual ` K ) e. Proset ) |
| 31 | eqidd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( le ` ( ODual ` K ) ) = ( le ` ( ODual ` K ) ) ) |
|
| 32 | 28 30 31 | prstcleval | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( le ` ( ODual ` K ) ) = ( le ` D ) ) |
| 33 | eqidd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Hom ` D ) = ( Hom ` D ) ) |
|
| 34 | simprl | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` D ) ) |
|
| 35 | simprr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
|
| 36 | 28 30 32 33 34 35 | prstchom | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( x ( le ` ( ODual ` K ) ) y <-> ( x ( Hom ` D ) y ) =/= (/) ) ) |
| 37 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> C = ( ProsetToCat ` K ) ) |
| 38 | eqidd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( le ` K ) = ( le ` K ) ) |
|
| 39 | 37 29 38 | prstcleval | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( le ` K ) = ( le ` C ) ) |
| 40 | eqidd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Hom ` C ) = ( Hom ` C ) ) |
|
| 41 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 42 | 4 41 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 43 | 21 42 | eqtr4di | |- ( ph -> ( Base ` D ) = ( Base ` C ) ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( Base ` D ) = ( Base ` C ) ) |
| 45 | 35 44 | eleqtrd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> y e. ( Base ` C ) ) |
| 46 | 34 44 | eleqtrd | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> x e. ( Base ` C ) ) |
| 47 | 37 29 39 40 45 46 | prstchom | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( y ( le ` K ) x <-> ( y ( Hom ` C ) x ) =/= (/) ) ) |
| 48 | 27 36 47 | 3bitr3d | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( Hom ` D ) y ) =/= (/) <-> ( y ( Hom ` C ) x ) =/= (/) ) ) |
| 49 | 48 | necon4bid | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( Hom ` D ) y ) = (/) <-> ( y ( Hom ` C ) x ) = (/) ) ) |
| 50 | fvresi | |- ( x e. ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) ` x ) = x ) |
|
| 51 | 50 | ad2antrl | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( _I |` ( Base ` D ) ) ` x ) = x ) |
| 52 | fvresi | |- ( y e. ( Base ` D ) -> ( ( _I |` ( Base ` D ) ) ` y ) = y ) |
|
| 53 | 52 | ad2antll | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( _I |` ( Base ` D ) ) ` y ) = y ) |
| 54 | 51 53 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( _I |` ( Base ` D ) ) ` x ) ( Hom ` O ) ( ( _I |` ( Base ` D ) ) ` y ) ) = ( x ( Hom ` O ) y ) ) |
| 55 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 56 | 55 4 | oppchom | |- ( x ( Hom ` O ) y ) = ( y ( Hom ` C ) x ) |
| 57 | 54 56 | eqtrdi | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( _I |` ( Base ` D ) ) ` x ) ( Hom ` O ) ( ( _I |` ( Base ` D ) ) ` y ) ) = ( y ( Hom ` C ) x ) ) |
| 58 | 57 | eqeq1d | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( ( ( _I |` ( Base ` D ) ) ` x ) ( Hom ` O ) ( ( _I |` ( Base ` D ) ) ` y ) ) = (/) <-> ( y ( Hom ` C ) x ) = (/) ) ) |
| 59 | 49 58 | bitr4d | |- ( ( ph /\ ( x e. ( Base ` D ) /\ y e. ( Base ` D ) ) ) -> ( ( x ( Hom ` D ) y ) = (/) <-> ( ( ( _I |` ( Base ` D ) ) ` x ) ( Hom ` O ) ( ( _I |` ( Base ` D ) ) ` y ) ) = (/) ) ) |
| 60 | 8 9 10 11 12 5 6 7 16 19 23 59 | thinccisod | |- ( ph -> D ( ~=c ` ( CatCat ` U ) ) O ) |