This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oduclatb.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| Assertion | oduclatb | ⊢ ( 𝑂 ∈ CLat ↔ 𝐷 ∈ CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduclatb.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | elex | ⊢ ( 𝑂 ∈ CLat → 𝑂 ∈ V ) | |
| 3 | noel | ⊢ ¬ ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ | |
| 4 | ssid | ⊢ ∅ ⊆ ∅ | |
| 5 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 6 | eqid | ⊢ ( lub ‘ ∅ ) = ( lub ‘ ∅ ) | |
| 7 | 5 6 | clatlubcl | ⊢ ( ( ∅ ∈ CLat ∧ ∅ ⊆ ∅ ) → ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ ) |
| 8 | 4 7 | mpan2 | ⊢ ( ∅ ∈ CLat → ( ( lub ‘ ∅ ) ‘ ∅ ) ∈ ∅ ) |
| 9 | 3 8 | mto | ⊢ ¬ ∅ ∈ CLat |
| 10 | fvprc | ⊢ ( ¬ 𝑂 ∈ V → ( ODual ‘ 𝑂 ) = ∅ ) | |
| 11 | 1 10 | eqtrid | ⊢ ( ¬ 𝑂 ∈ V → 𝐷 = ∅ ) |
| 12 | 11 | eleq1d | ⊢ ( ¬ 𝑂 ∈ V → ( 𝐷 ∈ CLat ↔ ∅ ∈ CLat ) ) |
| 13 | 9 12 | mtbiri | ⊢ ( ¬ 𝑂 ∈ V → ¬ 𝐷 ∈ CLat ) |
| 14 | 13 | con4i | ⊢ ( 𝐷 ∈ CLat → 𝑂 ∈ V ) |
| 15 | 1 | oduposb | ⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ Poset ↔ 𝐷 ∈ Poset ) ) |
| 16 | ancom | ⊢ ( ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) | |
| 17 | eqid | ⊢ ( glb ‘ 𝑂 ) = ( glb ‘ 𝑂 ) | |
| 18 | 1 17 | odulub | ⊢ ( 𝑂 ∈ V → ( glb ‘ 𝑂 ) = ( lub ‘ 𝐷 ) ) |
| 19 | 18 | dmeqd | ⊢ ( 𝑂 ∈ V → dom ( glb ‘ 𝑂 ) = dom ( lub ‘ 𝐷 ) ) |
| 20 | 19 | eqeq1d | ⊢ ( 𝑂 ∈ V → ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ↔ dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) |
| 21 | eqid | ⊢ ( lub ‘ 𝑂 ) = ( lub ‘ 𝑂 ) | |
| 22 | 1 21 | oduglb | ⊢ ( 𝑂 ∈ V → ( lub ‘ 𝑂 ) = ( glb ‘ 𝐷 ) ) |
| 23 | 22 | dmeqd | ⊢ ( 𝑂 ∈ V → dom ( lub ‘ 𝑂 ) = dom ( glb ‘ 𝐷 ) ) |
| 24 | 23 | eqeq1d | ⊢ ( 𝑂 ∈ V → ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ↔ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) |
| 25 | 20 24 | anbi12d | ⊢ ( 𝑂 ∈ V → ( ( dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
| 26 | 16 25 | bitrid | ⊢ ( 𝑂 ∈ V → ( ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ↔ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
| 27 | 15 26 | anbi12d | ⊢ ( 𝑂 ∈ V → ( ( 𝑂 ∈ Poset ∧ ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ↔ ( 𝐷 ∈ Poset ∧ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) ) |
| 28 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 29 | 28 21 17 | isclat | ⊢ ( 𝑂 ∈ CLat ↔ ( 𝑂 ∈ Poset ∧ ( dom ( lub ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝑂 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
| 30 | 1 28 | odubas | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
| 31 | eqid | ⊢ ( lub ‘ 𝐷 ) = ( lub ‘ 𝐷 ) | |
| 32 | eqid | ⊢ ( glb ‘ 𝐷 ) = ( glb ‘ 𝐷 ) | |
| 33 | 30 31 32 | isclat | ⊢ ( 𝐷 ∈ CLat ↔ ( 𝐷 ∈ Poset ∧ ( dom ( lub ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ∧ dom ( glb ‘ 𝐷 ) = 𝒫 ( Base ‘ 𝑂 ) ) ) ) |
| 34 | 27 29 33 | 3bitr4g | ⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ CLat ↔ 𝐷 ∈ CLat ) ) |
| 35 | 2 14 34 | pm5.21nii | ⊢ ( 𝑂 ∈ CLat ↔ 𝐷 ∈ CLat ) |