This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a complete lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oduclatb.d | |- D = ( ODual ` O ) |
|
| Assertion | oduclatb | |- ( O e. CLat <-> D e. CLat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduclatb.d | |- D = ( ODual ` O ) |
|
| 2 | elex | |- ( O e. CLat -> O e. _V ) |
|
| 3 | noel | |- -. ( ( lub ` (/) ) ` (/) ) e. (/) |
|
| 4 | ssid | |- (/) C_ (/) |
|
| 5 | base0 | |- (/) = ( Base ` (/) ) |
|
| 6 | eqid | |- ( lub ` (/) ) = ( lub ` (/) ) |
|
| 7 | 5 6 | clatlubcl | |- ( ( (/) e. CLat /\ (/) C_ (/) ) -> ( ( lub ` (/) ) ` (/) ) e. (/) ) |
| 8 | 4 7 | mpan2 | |- ( (/) e. CLat -> ( ( lub ` (/) ) ` (/) ) e. (/) ) |
| 9 | 3 8 | mto | |- -. (/) e. CLat |
| 10 | fvprc | |- ( -. O e. _V -> ( ODual ` O ) = (/) ) |
|
| 11 | 1 10 | eqtrid | |- ( -. O e. _V -> D = (/) ) |
| 12 | 11 | eleq1d | |- ( -. O e. _V -> ( D e. CLat <-> (/) e. CLat ) ) |
| 13 | 9 12 | mtbiri | |- ( -. O e. _V -> -. D e. CLat ) |
| 14 | 13 | con4i | |- ( D e. CLat -> O e. _V ) |
| 15 | 1 | oduposb | |- ( O e. _V -> ( O e. Poset <-> D e. Poset ) ) |
| 16 | ancom | |- ( ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) <-> ( dom ( glb ` O ) = ~P ( Base ` O ) /\ dom ( lub ` O ) = ~P ( Base ` O ) ) ) |
|
| 17 | eqid | |- ( glb ` O ) = ( glb ` O ) |
|
| 18 | 1 17 | odulub | |- ( O e. _V -> ( glb ` O ) = ( lub ` D ) ) |
| 19 | 18 | dmeqd | |- ( O e. _V -> dom ( glb ` O ) = dom ( lub ` D ) ) |
| 20 | 19 | eqeq1d | |- ( O e. _V -> ( dom ( glb ` O ) = ~P ( Base ` O ) <-> dom ( lub ` D ) = ~P ( Base ` O ) ) ) |
| 21 | eqid | |- ( lub ` O ) = ( lub ` O ) |
|
| 22 | 1 21 | oduglb | |- ( O e. _V -> ( lub ` O ) = ( glb ` D ) ) |
| 23 | 22 | dmeqd | |- ( O e. _V -> dom ( lub ` O ) = dom ( glb ` D ) ) |
| 24 | 23 | eqeq1d | |- ( O e. _V -> ( dom ( lub ` O ) = ~P ( Base ` O ) <-> dom ( glb ` D ) = ~P ( Base ` O ) ) ) |
| 25 | 20 24 | anbi12d | |- ( O e. _V -> ( ( dom ( glb ` O ) = ~P ( Base ` O ) /\ dom ( lub ` O ) = ~P ( Base ` O ) ) <-> ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 26 | 16 25 | bitrid | |- ( O e. _V -> ( ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) <-> ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 27 | 15 26 | anbi12d | |- ( O e. _V -> ( ( O e. Poset /\ ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) ) <-> ( D e. Poset /\ ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) ) |
| 28 | eqid | |- ( Base ` O ) = ( Base ` O ) |
|
| 29 | 28 21 17 | isclat | |- ( O e. CLat <-> ( O e. Poset /\ ( dom ( lub ` O ) = ~P ( Base ` O ) /\ dom ( glb ` O ) = ~P ( Base ` O ) ) ) ) |
| 30 | 1 28 | odubas | |- ( Base ` O ) = ( Base ` D ) |
| 31 | eqid | |- ( lub ` D ) = ( lub ` D ) |
|
| 32 | eqid | |- ( glb ` D ) = ( glb ` D ) |
|
| 33 | 30 31 32 | isclat | |- ( D e. CLat <-> ( D e. Poset /\ ( dom ( lub ` D ) = ~P ( Base ` O ) /\ dom ( glb ` D ) = ~P ( Base ` O ) ) ) ) |
| 34 | 27 29 33 | 3bitr4g | |- ( O e. _V -> ( O e. CLat <-> D e. CLat ) ) |
| 35 | 2 14 34 | pm5.21nii | |- ( O e. CLat <-> D e. CLat ) |