This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Greatest lower bounds in a dual order are least upper bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduglb.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| oduglb.l | ⊢ 𝑈 = ( lub ‘ 𝑂 ) | ||
| Assertion | oduglb | ⊢ ( 𝑂 ∈ 𝑉 → 𝑈 = ( glb ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduglb.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | oduglb.l | ⊢ 𝑈 = ( lub ‘ 𝑂 ) | |
| 3 | vex | ⊢ 𝑏 ∈ V | |
| 4 | vex | ⊢ 𝑐 ∈ V | |
| 5 | 3 4 | brcnv | ⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑏 ) |
| 6 | 5 | ralbii | ⊢ ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ) |
| 7 | vex | ⊢ 𝑑 ∈ V | |
| 8 | 7 4 | brcnv | ⊢ ( 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ 𝑐 ( le ‘ 𝑂 ) 𝑑 ) |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 ↔ ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 ) |
| 10 | 7 3 | brcnv | ⊢ ( 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ( le ‘ 𝑂 ) 𝑑 ) |
| 11 | 9 10 | imbi12i | ⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ↔ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) |
| 13 | 6 12 | anbi12i | ⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) |
| 14 | 13 | a1i | ⊢ ( 𝑏 ∈ ( Base ‘ 𝑂 ) → ( ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) ) |
| 15 | 14 | riotabiia | ⊢ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) = ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) |
| 16 | 15 | mpteq2i | ⊢ ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) ) = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) ) |
| 17 | 13 | reubii | ⊢ ( ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ↔ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) |
| 18 | 17 | abbii | ⊢ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) } = { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) } |
| 19 | 16 18 | reseq12i | ⊢ ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) } ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) } ) |
| 20 | 19 | eqcomi | ⊢ ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) } ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) } ) |
| 21 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 22 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 23 | eqid | ⊢ ( lub ‘ 𝑂 ) = ( lub ‘ 𝑂 ) | |
| 24 | biid | ⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) | |
| 25 | id | ⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉 ) | |
| 26 | 21 22 23 24 25 | lubfval | ⊢ ( 𝑂 ∈ 𝑉 → ( lub ‘ 𝑂 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑏 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑐 ( le ‘ 𝑂 ) 𝑑 → 𝑏 ( le ‘ 𝑂 ) 𝑑 ) ) } ) ) |
| 27 | 1 | fvexi | ⊢ 𝐷 ∈ V |
| 28 | 1 21 | odubas | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
| 29 | 1 22 | oduleval | ⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
| 30 | eqid | ⊢ ( glb ‘ 𝐷 ) = ( glb ‘ 𝐷 ) | |
| 31 | biid | ⊢ ( ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ↔ ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) | |
| 32 | id | ⊢ ( 𝐷 ∈ V → 𝐷 ∈ V ) | |
| 33 | 28 29 30 31 32 | glbfval | ⊢ ( 𝐷 ∈ V → ( glb ‘ 𝐷 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) } ) ) |
| 34 | 27 33 | mp1i | ⊢ ( 𝑂 ∈ 𝑉 → ( glb ‘ 𝐷 ) = ( ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑂 ) ↦ ( ℩ 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) ) ) ↾ { 𝑎 ∣ ∃! 𝑏 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑏 ◡ ( le ‘ 𝑂 ) 𝑐 ∧ ∀ 𝑑 ∈ ( Base ‘ 𝑂 ) ( ∀ 𝑐 ∈ 𝑎 𝑑 ◡ ( le ‘ 𝑂 ) 𝑐 → 𝑑 ◡ ( le ‘ 𝑂 ) 𝑏 ) ) } ) ) |
| 35 | 20 26 34 | 3eqtr4a | ⊢ ( 𝑂 ∈ 𝑉 → ( lub ‘ 𝑂 ) = ( glb ‘ 𝐷 ) ) |
| 36 | 2 35 | eqtrid | ⊢ ( 𝑂 ∈ 𝑉 → 𝑈 = ( glb ‘ 𝐷 ) ) |