This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | odupos.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| Assertion | oduposb | ⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ Poset ↔ 𝐷 ∈ Poset ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odupos.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | 1 | odupos | ⊢ ( 𝑂 ∈ Poset → 𝐷 ∈ Poset ) |
| 3 | eqid | ⊢ ( ODual ‘ 𝐷 ) = ( ODual ‘ 𝐷 ) | |
| 4 | 3 | odupos | ⊢ ( 𝐷 ∈ Poset → ( ODual ‘ 𝐷 ) ∈ Poset ) |
| 5 | fvexd | ⊢ ( 𝑂 ∈ 𝑉 → ( ODual ‘ 𝐷 ) ∈ V ) | |
| 6 | id | ⊢ ( 𝑂 ∈ 𝑉 → 𝑂 ∈ 𝑉 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) | |
| 8 | 1 7 | odubas | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝐷 ) |
| 9 | 3 8 | odubas | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ ( ODual ‘ 𝐷 ) ) |
| 10 | 9 | a1i | ⊢ ( 𝑂 ∈ 𝑉 → ( Base ‘ 𝑂 ) = ( Base ‘ ( ODual ‘ 𝐷 ) ) ) |
| 11 | eqidd | ⊢ ( 𝑂 ∈ 𝑉 → ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) ) | |
| 12 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 13 | 1 12 | oduleval | ⊢ ◡ ( le ‘ 𝑂 ) = ( le ‘ 𝐷 ) |
| 14 | 3 13 | oduleval | ⊢ ◡ ◡ ( le ‘ 𝑂 ) = ( le ‘ ( ODual ‘ 𝐷 ) ) |
| 15 | 14 | eqcomi | ⊢ ( le ‘ ( ODual ‘ 𝐷 ) ) = ◡ ◡ ( le ‘ 𝑂 ) |
| 16 | 15 | breqi | ⊢ ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ◡ ◡ ( le ‘ 𝑂 ) 𝑏 ) |
| 17 | vex | ⊢ 𝑎 ∈ V | |
| 18 | vex | ⊢ 𝑏 ∈ V | |
| 19 | 17 18 | brcnv | ⊢ ( 𝑎 ◡ ◡ ( le ‘ 𝑂 ) 𝑏 ↔ 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ) |
| 20 | 18 17 | brcnv | ⊢ ( 𝑏 ◡ ( le ‘ 𝑂 ) 𝑎 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
| 21 | 16 19 20 | 3bitri | ⊢ ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) |
| 22 | 21 | a1i | ⊢ ( ( 𝑂 ∈ 𝑉 ∧ ( 𝑎 ∈ ( Base ‘ 𝑂 ) ∧ 𝑏 ∈ ( Base ‘ 𝑂 ) ) ) → ( 𝑎 ( le ‘ ( ODual ‘ 𝐷 ) ) 𝑏 ↔ 𝑎 ( le ‘ 𝑂 ) 𝑏 ) ) |
| 23 | 5 6 10 11 22 | pospropd | ⊢ ( 𝑂 ∈ 𝑉 → ( ( ODual ‘ 𝐷 ) ∈ Poset ↔ 𝑂 ∈ Poset ) ) |
| 24 | 4 23 | imbitrid | ⊢ ( 𝑂 ∈ 𝑉 → ( 𝐷 ∈ Poset → 𝑂 ∈ Poset ) ) |
| 25 | 2 24 | impbid2 | ⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ Poset ↔ 𝐷 ∈ Poset ) ) |