This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete lattice is a lattice. (Contributed by NM, 18-Sep-2011) TODO: use eqrelrdv2 to shorten proof and eliminate joindmss and meetdmss ?
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clatl | ⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 2 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Poset ) | |
| 4 | 1 2 3 | joindmss | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( join ‘ 𝐾 ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 5 | relxp | ⊢ Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 7 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) | |
| 8 | vex | ⊢ 𝑥 ∈ V | |
| 9 | vex | ⊢ 𝑦 ∈ V | |
| 10 | 8 9 | prss | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ↔ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
| 11 | 7 10 | sylbb | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
| 12 | prex | ⊢ { 𝑥 , 𝑦 } ∈ V | |
| 13 | 12 | elpw | ⊢ ( { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ⊆ ( Base ‘ 𝐾 ) ) |
| 14 | 11 13 | sylibr | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) |
| 15 | eleq2 | ⊢ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) ) | |
| 16 | 14 15 | imbitrrid | ⊢ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 18 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 19 | 8 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑥 ∈ V ) |
| 20 | 9 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑦 ∈ V ) |
| 21 | 18 2 3 19 20 | joindef | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom ( join ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 22 | 17 21 | sylibrd | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ dom ( join ‘ 𝐾 ) ) ) |
| 23 | 6 22 | relssdv | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⊆ dom ( join ‘ 𝐾 ) ) |
| 24 | 4 23 | eqssd | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 25 | 24 | ex | ⊢ ( 𝐾 ∈ Poset → ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 26 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 27 | simpl | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝐾 ∈ Poset ) | |
| 28 | 1 26 27 | meetdmss | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( meet ‘ 𝐾 ) ⊆ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 29 | 5 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → Rel ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 30 | eleq2 | ⊢ ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ 𝒫 ( Base ‘ 𝐾 ) ) ) | |
| 31 | 14 30 | imbitrrid | ⊢ ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 33 | eqid | ⊢ ( glb ‘ 𝐾 ) = ( glb ‘ 𝐾 ) | |
| 34 | 8 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑥 ∈ V ) |
| 35 | 9 | a1i | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → 𝑦 ∈ V ) |
| 36 | 33 26 27 34 35 | meetdef | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ dom ( meet ‘ 𝐾 ) ↔ { 𝑥 , 𝑦 } ∈ dom ( glb ‘ 𝐾 ) ) ) |
| 37 | 32 36 | sylibrd | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ dom ( meet ‘ 𝐾 ) ) ) |
| 38 | 29 37 | relssdv | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ⊆ dom ( meet ‘ 𝐾 ) ) |
| 39 | 28 38 | eqssd | ⊢ ( ( 𝐾 ∈ Poset ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) |
| 40 | 39 | ex | ⊢ ( 𝐾 ∈ Poset → ( dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) → dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) |
| 41 | 25 40 | anim12d | ⊢ ( 𝐾 ∈ Poset → ( ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) → ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 42 | 41 | imdistani | ⊢ ( ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) → ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 43 | 1 18 33 | isclat | ⊢ ( 𝐾 ∈ CLat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( lub ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ∧ dom ( glb ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐾 ) ) ) ) |
| 44 | 1 2 26 | islat | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ( join ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ∧ dom ( meet ‘ 𝐾 ) = ( ( Base ‘ 𝐾 ) × ( Base ‘ 𝐾 ) ) ) ) ) |
| 45 | 42 43 44 | 3imtr4i | ⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) |