This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of an order dual structure. (Contributed by Stefan O'Rear, 29-Jan-2015) (Proof shortened by AV, 12-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| odubas.b | ⊢ 𝐵 = ( Base ‘ 𝑂 ) | ||
| Assertion | odubas | ⊢ 𝐵 = ( Base ‘ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oduval.d | ⊢ 𝐷 = ( ODual ‘ 𝑂 ) | |
| 2 | odubas.b | ⊢ 𝐵 = ( Base ‘ 𝑂 ) | |
| 3 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 4 | plendxnbasendx | ⊢ ( le ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 5 | 4 | necomi | ⊢ ( Base ‘ ndx ) ≠ ( le ‘ ndx ) |
| 6 | 3 5 | setsnid | ⊢ ( Base ‘ 𝑂 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 7 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 8 | 1 7 | oduval | ⊢ 𝐷 = ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) |
| 9 | 8 | fveq2i | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ ( 𝑂 sSet 〈 ( le ‘ ndx ) , ◡ ( le ‘ 𝑂 ) 〉 ) ) |
| 10 | 6 2 9 | 3eqtr4i | ⊢ 𝐵 = ( Base ‘ 𝐷 ) |