This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | odval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 7 | 1 2 3 4 | odeq | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 8 | 7 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 = ( 𝑂 ‘ 𝐴 ) ↔ ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |
| 9 | 8 | bicomd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑥 ∈ ℕ0 ) → ( ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ↔ 𝑥 = ( 𝑂 ‘ 𝐴 ) ) ) |
| 10 | 6 9 | riota5 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ℩ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) = ( 𝑂 ‘ 𝐴 ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℕ0 ∀ 𝑦 ∈ ℕ0 ( 𝑥 ∥ 𝑦 ↔ ( 𝑦 · 𝐴 ) = 0 ) ) ) |