This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | oddvdsnn0 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 6 | 1 2 3 4 | mndodcong | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) |
| 7 | 6 | 3expia | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑁 ∈ ℕ0 ∧ 0 ∈ ℕ0 ) ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
| 8 | 5 7 | mpanr2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
| 9 | 8 | 3impa | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ) ) |
| 10 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 12 | 11 | subid1d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 − 0 ) = 𝑁 ) |
| 13 | 12 | breq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ) ) |
| 14 | 1 4 3 | mulg0 | ⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 0 · 𝐴 ) = 0 ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 17 | 13 16 | bibi12d | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑁 − 0 ) ↔ ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) ↔ ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
| 18 | 9 17 | sylibd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
| 19 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) = 0 ) | |
| 20 | 19 | breq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → 𝑁 ∈ ℕ0 ) | |
| 22 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 23 | 0dvds | ⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
| 25 | 15 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 0 · 𝐴 ) = 0 ) |
| 26 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = ( 0 · 𝐴 ) ) | |
| 27 | 26 | eqeq1d | ⊢ ( 𝑁 = 0 → ( ( 𝑁 · 𝐴 ) = 0 ↔ ( 0 · 𝐴 ) = 0 ) ) |
| 28 | 25 27 | syl5ibrcom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 → ( 𝑁 · 𝐴 ) = 0 ) ) |
| 29 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
| 30 | 29 | 3com23 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) ) |
| 31 | elfznn | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ( 1 ... 𝑁 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 32 | nnne0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ∧ 𝑁 ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) |
| 34 | 33 | 3expia | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 35 | 34 | 3ad2antl2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ → ( 𝑂 ‘ 𝐴 ) ≠ 0 ) ) |
| 36 | 35 | necon2bd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ¬ 𝑁 ∈ ℕ ) ) |
| 37 | simpl3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → 𝑁 ∈ ℕ0 ) | |
| 38 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 40 | 39 | ord | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ¬ 𝑁 ∈ ℕ → 𝑁 = 0 ) ) |
| 41 | 36 40 | syld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 · 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 𝑁 = 0 ) ) |
| 42 | 41 | impancom | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑁 · 𝐴 ) = 0 → 𝑁 = 0 ) ) |
| 43 | 28 42 | impbid | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( 𝑁 = 0 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 44 | 20 24 43 | 3bitrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) = 0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |
| 45 | 44 | ex | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) ) |
| 46 | 1 2 | odcl | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 48 | elnn0 | ⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) | |
| 49 | 47 48 | sylib | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 50 | 18 45 49 | mpjaod | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝑁 ↔ ( 𝑁 · 𝐴 ) = 0 ) ) |