This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | ||
| odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mndodcong | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | odcl.2 | ⊢ 𝑂 = ( od ‘ 𝐺 ) | |
| 3 | odid.3 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | odid.4 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | oveq1 | ⊢ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) | |
| 6 | simp2l | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℕ0 ) | |
| 7 | 6 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 8 | simp3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) | |
| 9 | 7 8 | zmodcld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 10 | 9 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 11 | 10 | nn0red | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 | simp2r | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 ) | |
| 13 | 12 | nn0zd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 14 | 13 8 | zmodcld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 15 | 14 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 16 | 15 | nn0red | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
| 17 | simp1l | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Mnd ) | |
| 18 | 17 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → 𝐺 ∈ Mnd ) |
| 19 | simp1r | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) | |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → 𝐴 ∈ 𝑋 ) |
| 21 | 8 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
| 22 | 6 | nn0red | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 23 | 8 | nnrpd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
| 24 | modlt | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) | |
| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
| 27 | 12 | nn0red | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 28 | modlt | ⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) | |
| 29 | 27 23 28 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
| 31 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) | |
| 32 | 1 2 3 4 18 20 21 10 15 26 30 31 | mndodconglem | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 33 | 31 | eqcomd | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
| 34 | 1 2 3 4 18 20 21 15 10 30 26 33 | mndodconglem | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 35 | 34 | eqcomd | ⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 36 | 11 16 32 35 | lecasei | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
| 37 | 36 | ex | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
| 38 | 5 37 | impbid2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
| 39 | moddvds | ⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ) ) | |
| 40 | 8 7 13 39 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ) ) |
| 41 | 1 2 3 4 | odmodnn0 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑀 · 𝐴 ) ) |
| 42 | 17 19 6 8 41 | syl31anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑀 · 𝐴 ) ) |
| 43 | 1 2 3 4 | odmodnn0 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 44 | 17 19 12 8 43 | syl31anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
| 46 | 38 40 45 | 3bitr3d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |