This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The only multiples of A that are equal to the identity are the multiples of the order of A . (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | oddvdsnn0 | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | 0nn0 | |- 0 e. NN0 |
|
| 6 | 1 2 3 4 | mndodcong | |- ( ( ( G e. Mnd /\ A e. X ) /\ ( N e. NN0 /\ 0 e. NN0 ) /\ ( O ` A ) e. NN ) -> ( ( O ` A ) || ( N - 0 ) <-> ( N .x. A ) = ( 0 .x. A ) ) ) |
| 7 | 6 | 3expia | |- ( ( ( G e. Mnd /\ A e. X ) /\ ( N e. NN0 /\ 0 e. NN0 ) ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( N - 0 ) <-> ( N .x. A ) = ( 0 .x. A ) ) ) ) |
| 8 | 5 7 | mpanr2 | |- ( ( ( G e. Mnd /\ A e. X ) /\ N e. NN0 ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( N - 0 ) <-> ( N .x. A ) = ( 0 .x. A ) ) ) ) |
| 9 | 8 | 3impa | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || ( N - 0 ) <-> ( N .x. A ) = ( 0 .x. A ) ) ) ) |
| 10 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 11 | 10 | 3ad2ant3 | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> N e. CC ) |
| 12 | 11 | subid1d | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( N - 0 ) = N ) |
| 13 | 12 | breq2d | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) || ( N - 0 ) <-> ( O ` A ) || N ) ) |
| 14 | 1 4 3 | mulg0 | |- ( A e. X -> ( 0 .x. A ) = .0. ) |
| 15 | 14 | 3ad2ant2 | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( 0 .x. A ) = .0. ) |
| 16 | 15 | eqeq2d | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( N .x. A ) = ( 0 .x. A ) <-> ( N .x. A ) = .0. ) ) |
| 17 | 13 16 | bibi12d | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( ( O ` A ) || ( N - 0 ) <-> ( N .x. A ) = ( 0 .x. A ) ) <-> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) ) |
| 18 | 9 17 | sylibd | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) e. NN -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) ) |
| 19 | simpr | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( O ` A ) = 0 ) |
|
| 20 | 19 | breq1d | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( ( O ` A ) || N <-> 0 || N ) ) |
| 21 | simpl3 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> N e. NN0 ) |
|
| 22 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 23 | 0dvds | |- ( N e. ZZ -> ( 0 || N <-> N = 0 ) ) |
|
| 24 | 21 22 23 | 3syl | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( 0 || N <-> N = 0 ) ) |
| 25 | 15 | adantr | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( 0 .x. A ) = .0. ) |
| 26 | oveq1 | |- ( N = 0 -> ( N .x. A ) = ( 0 .x. A ) ) |
|
| 27 | 26 | eqeq1d | |- ( N = 0 -> ( ( N .x. A ) = .0. <-> ( 0 .x. A ) = .0. ) ) |
| 28 | 25 27 | syl5ibrcom | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( N = 0 -> ( N .x. A ) = .0. ) ) |
| 29 | 1 2 3 4 | odlem2 | |- ( ( A e. X /\ N e. NN /\ ( N .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... N ) ) |
| 30 | 29 | 3com23 | |- ( ( A e. X /\ ( N .x. A ) = .0. /\ N e. NN ) -> ( O ` A ) e. ( 1 ... N ) ) |
| 31 | elfznn | |- ( ( O ` A ) e. ( 1 ... N ) -> ( O ` A ) e. NN ) |
|
| 32 | nnne0 | |- ( ( O ` A ) e. NN -> ( O ` A ) =/= 0 ) |
|
| 33 | 30 31 32 | 3syl | |- ( ( A e. X /\ ( N .x. A ) = .0. /\ N e. NN ) -> ( O ` A ) =/= 0 ) |
| 34 | 33 | 3expia | |- ( ( A e. X /\ ( N .x. A ) = .0. ) -> ( N e. NN -> ( O ` A ) =/= 0 ) ) |
| 35 | 34 | 3ad2antl2 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> ( N e. NN -> ( O ` A ) =/= 0 ) ) |
| 36 | 35 | necon2bd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> ( ( O ` A ) = 0 -> -. N e. NN ) ) |
| 37 | simpl3 | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> N e. NN0 ) |
|
| 38 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> ( N e. NN \/ N = 0 ) ) |
| 40 | 39 | ord | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> ( -. N e. NN -> N = 0 ) ) |
| 41 | 36 40 | syld | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( N .x. A ) = .0. ) -> ( ( O ` A ) = 0 -> N = 0 ) ) |
| 42 | 41 | impancom | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( ( N .x. A ) = .0. -> N = 0 ) ) |
| 43 | 28 42 | impbid | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( N = 0 <-> ( N .x. A ) = .0. ) ) |
| 44 | 20 24 43 | 3bitrd | |- ( ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) /\ ( O ` A ) = 0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |
| 45 | 44 | ex | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) = 0 -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) ) |
| 46 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 47 | 46 | 3ad2ant2 | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( O ` A ) e. NN0 ) |
| 48 | elnn0 | |- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
|
| 49 | 47 48 | sylib | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
| 50 | 18 45 49 | mpjaod | |- ( ( G e. Mnd /\ A e. X /\ N e. NN0 ) -> ( ( O ` A ) || N <-> ( N .x. A ) = .0. ) ) |