This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddge22np1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) ) | |
| 2 | nn0z | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
| 4 | eluz2 | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) | |
| 5 | 2re | ⊢ 2 ∈ ℝ | |
| 6 | 5 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℝ ) |
| 7 | 1red | ⊢ ( 𝑛 ∈ ℕ0 → 1 ∈ ℝ ) | |
| 8 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 9 | 8 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 10 | id | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) | |
| 11 | 9 10 | nn0mulcld | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℕ0 ) |
| 12 | 11 | nn0red | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℝ ) |
| 13 | 6 7 12 | lesubaddd | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) ↔ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) ) |
| 14 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 15 | 14 | breq1i | ⊢ ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) ↔ 1 ≤ ( 2 · 𝑛 ) ) |
| 16 | nn0re | ⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) | |
| 17 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 18 | 17 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 19 | 7 16 18 | ledivmuld | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 / 2 ) ≤ 𝑛 ↔ 1 ≤ ( 2 · 𝑛 ) ) ) |
| 20 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 21 | 0red | ⊢ ( 𝑛 ∈ ℕ0 → 0 ∈ ℝ ) | |
| 22 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 23 | 22 | a1i | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 / 2 ) ∈ ℝ ) |
| 24 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 𝑛 ) → 0 < 𝑛 ) ) | |
| 25 | 21 23 16 24 | syl3anc | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 0 < ( 1 / 2 ) ∧ ( 1 / 2 ) ≤ 𝑛 ) → 0 < 𝑛 ) ) |
| 26 | 20 25 | mpani | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 1 / 2 ) ≤ 𝑛 → 0 < 𝑛 ) ) |
| 27 | 19 26 | sylbird | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 ≤ ( 2 · 𝑛 ) → 0 < 𝑛 ) ) |
| 28 | 15 27 | biimtrid | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( 2 · 𝑛 ) → 0 < 𝑛 ) ) |
| 29 | 13 28 | sylbird | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 ≤ ( ( 2 · 𝑛 ) + 1 ) → 0 < 𝑛 ) ) |
| 30 | 29 | com12 | ⊢ ( 2 ≤ ( ( 2 · 𝑛 ) + 1 ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
| 31 | 30 | 3ad2ant3 | ⊢ ( ( 2 ∈ ℤ ∧ ( ( 2 · 𝑛 ) + 1 ) ∈ ℤ ∧ 2 ≤ ( ( 2 · 𝑛 ) + 1 ) ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
| 32 | 4 31 | sylbi | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 0 < 𝑛 ) ) |
| 33 | 32 | imp | ⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 0 < 𝑛 ) |
| 34 | elnnz | ⊢ ( 𝑛 ∈ ℕ ↔ ( 𝑛 ∈ ℤ ∧ 0 < 𝑛 ) ) | |
| 35 | 3 33 34 | sylanbrc | ⊢ ( ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ ) |
| 36 | 35 | ex | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ ) ) |
| 37 | 1 36 | biimtrrdi | ⊢ ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ ) ) ) |
| 38 | 37 | com13 | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 → 𝑛 ∈ ℕ ) ) |
| 40 | 39 | pm4.71rd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 41 | 40 | bicomd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 42 | 41 | rexbidva | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 43 | nnssnn0 | ⊢ ℕ ⊆ ℕ0 | |
| 44 | rexss | ⊢ ( ℕ ⊆ ℕ0 → ( ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) | |
| 45 | 43 44 | mp1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 𝑛 ∈ ℕ ∧ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) ) |
| 46 | eluzge2nn0 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℕ0 ) | |
| 47 | oddnn02np1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) | |
| 48 | 46 47 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |
| 49 | 42 45 48 | 3bitr4rd | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ ( ( 2 · 𝑛 ) + 1 ) = 𝑁 ) ) |