This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021) (Proof shortened by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddge22np1 | |- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN ( ( 2 x. n ) + 1 ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> N e. ( ZZ>= ` 2 ) ) ) |
|
| 2 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 3 | 2 | adantl | |- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. ZZ ) |
| 4 | eluz2 | |- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) ) |
|
| 5 | 2re | |- 2 e. RR |
|
| 6 | 5 | a1i | |- ( n e. NN0 -> 2 e. RR ) |
| 7 | 1red | |- ( n e. NN0 -> 1 e. RR ) |
|
| 8 | 2nn0 | |- 2 e. NN0 |
|
| 9 | 8 | a1i | |- ( n e. NN0 -> 2 e. NN0 ) |
| 10 | id | |- ( n e. NN0 -> n e. NN0 ) |
|
| 11 | 9 10 | nn0mulcld | |- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
| 12 | 11 | nn0red | |- ( n e. NN0 -> ( 2 x. n ) e. RR ) |
| 13 | 6 7 12 | lesubaddd | |- ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 2 <_ ( ( 2 x. n ) + 1 ) ) ) |
| 14 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 15 | 14 | breq1i | |- ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 1 <_ ( 2 x. n ) ) |
| 16 | nn0re | |- ( n e. NN0 -> n e. RR ) |
|
| 17 | 2rp | |- 2 e. RR+ |
|
| 18 | 17 | a1i | |- ( n e. NN0 -> 2 e. RR+ ) |
| 19 | 7 16 18 | ledivmuld | |- ( n e. NN0 -> ( ( 1 / 2 ) <_ n <-> 1 <_ ( 2 x. n ) ) ) |
| 20 | halfgt0 | |- 0 < ( 1 / 2 ) |
|
| 21 | 0red | |- ( n e. NN0 -> 0 e. RR ) |
|
| 22 | halfre | |- ( 1 / 2 ) e. RR |
|
| 23 | 22 | a1i | |- ( n e. NN0 -> ( 1 / 2 ) e. RR ) |
| 24 | ltletr | |- ( ( 0 e. RR /\ ( 1 / 2 ) e. RR /\ n e. RR ) -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) |
|
| 25 | 21 23 16 24 | syl3anc | |- ( n e. NN0 -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) |
| 26 | 20 25 | mpani | |- ( n e. NN0 -> ( ( 1 / 2 ) <_ n -> 0 < n ) ) |
| 27 | 19 26 | sylbird | |- ( n e. NN0 -> ( 1 <_ ( 2 x. n ) -> 0 < n ) ) |
| 28 | 15 27 | biimtrid | |- ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) -> 0 < n ) ) |
| 29 | 13 28 | sylbird | |- ( n e. NN0 -> ( 2 <_ ( ( 2 x. n ) + 1 ) -> 0 < n ) ) |
| 30 | 29 | com12 | |- ( 2 <_ ( ( 2 x. n ) + 1 ) -> ( n e. NN0 -> 0 < n ) ) |
| 31 | 30 | 3ad2ant3 | |- ( ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) -> ( n e. NN0 -> 0 < n ) ) |
| 32 | 4 31 | sylbi | |- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> 0 < n ) ) |
| 33 | 32 | imp | |- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> 0 < n ) |
| 34 | elnnz | |- ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) |
|
| 35 | 3 33 34 | sylanbrc | |- ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. NN ) |
| 36 | 35 | ex | |- ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) |
| 37 | 1 36 | biimtrrdi | |- ( ( ( 2 x. n ) + 1 ) = N -> ( N e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) ) |
| 38 | 37 | com13 | |- ( n e. NN0 -> ( N e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) ) |
| 39 | 38 | impcom | |- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) |
| 40 | 39 | pm4.71rd | |- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 41 | 40 | bicomd | |- ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> ( ( 2 x. n ) + 1 ) = N ) ) |
| 42 | 41 | rexbidva | |- ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
| 43 | nnssnn0 | |- NN C_ NN0 |
|
| 44 | rexss | |- ( NN C_ NN0 -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
|
| 45 | 43 44 | mp1i | |- ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) |
| 46 | eluzge2nn0 | |- ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) |
|
| 47 | oddnn02np1 | |- ( N e. NN0 -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
|
| 48 | 46 47 | syl | |- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) |
| 49 | 42 45 48 | 3bitr4rd | |- ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN ( ( 2 x. n ) + 1 ) = N ) ) |