This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexss | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | pm3.41 | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 ∈ 𝐵 ) ) | |
| 3 | 2 | pm4.71rd | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 4 | 3 | alexbii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 5 | 1 4 | sylbi | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 7 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |