This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | evennn02n | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( ( 2 · 𝑛 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) | |
| 2 | simpr | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℤ ) | |
| 3 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 4 | 3 | a1i | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 2 ∈ ℝ+ ) |
| 5 | zre | ⊢ ( 𝑛 ∈ ℤ → 𝑛 ∈ ℝ ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℝ ) |
| 7 | nn0ge0 | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → 0 ≤ ( 2 · 𝑛 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 0 ≤ ( 2 · 𝑛 ) ) |
| 9 | 4 6 8 | prodge0rd | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 0 ≤ 𝑛 ) |
| 10 | elnn0z | ⊢ ( 𝑛 ∈ ℕ0 ↔ ( 𝑛 ∈ ℤ ∧ 0 ≤ 𝑛 ) ) | |
| 11 | 2 9 10 | sylanbrc | ⊢ ( ( ( 2 · 𝑛 ) ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → 𝑛 ∈ ℕ0 ) |
| 12 | 11 | ex | ⊢ ( ( 2 · 𝑛 ) ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) |
| 13 | 1 12 | biimtrrdi | ⊢ ( ( 2 · 𝑛 ) = 𝑁 → ( 𝑁 ∈ ℕ0 → ( 𝑛 ∈ ℤ → 𝑛 ∈ ℕ0 ) ) ) |
| 14 | 13 | com13 | ⊢ ( 𝑛 ∈ ℤ → ( 𝑁 ∈ ℕ0 → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) ) |
| 15 | 14 | impcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 → 𝑛 ∈ ℕ0 ) ) |
| 16 | 15 | pm4.71rd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 2 · 𝑛 ) = 𝑁 ↔ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
| 17 | 16 | bicomd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 18 | 17 | rexbidva | ⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 19 | nn0ssz | ⊢ ℕ0 ⊆ ℤ | |
| 20 | rexss | ⊢ ( ℕ0 ⊆ ℤ → ( ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) | |
| 21 | 19 20 | mp1i | ⊢ ( 𝑁 ∈ ℕ0 → ( ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 ∈ ℕ0 ∧ ( 2 · 𝑛 ) = 𝑁 ) ) ) |
| 22 | even2n | ⊢ ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) | |
| 23 | 22 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 2 · 𝑛 ) = 𝑁 ) ) |
| 24 | 18 21 23 | 3bitr4rd | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℕ0 ( 2 · 𝑛 ) = 𝑁 ) ) |