This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of Beran p. 95. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | issh2 | ⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh | ⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ) ) | |
| 2 | ax-hfvadd | ⊢ +ℎ : ( ℋ × ℋ ) ⟶ ℋ | |
| 3 | ffun | ⊢ ( +ℎ : ( ℋ × ℋ ) ⟶ ℋ → Fun +ℎ ) | |
| 4 | 2 3 | ax-mp | ⊢ Fun +ℎ |
| 5 | xpss12 | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ ) → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) | |
| 6 | 5 | anidms | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐻 × 𝐻 ) ⊆ ( ℋ × ℋ ) ) |
| 7 | 2 | fdmi | ⊢ dom +ℎ = ( ℋ × ℋ ) |
| 8 | 6 7 | sseqtrrdi | ⊢ ( 𝐻 ⊆ ℋ → ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ) |
| 9 | funimassov | ⊢ ( ( Fun +ℎ ∧ ( 𝐻 × 𝐻 ) ⊆ dom +ℎ ) → ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) ) | |
| 10 | 4 8 9 | sylancr | ⊢ ( 𝐻 ⊆ ℋ → ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 11 | ax-hfvmul | ⊢ ·ℎ : ( ℂ × ℋ ) ⟶ ℋ | |
| 12 | ffun | ⊢ ( ·ℎ : ( ℂ × ℋ ) ⟶ ℋ → Fun ·ℎ ) | |
| 13 | 11 12 | ax-mp | ⊢ Fun ·ℎ |
| 14 | xpss2 | ⊢ ( 𝐻 ⊆ ℋ → ( ℂ × 𝐻 ) ⊆ ( ℂ × ℋ ) ) | |
| 15 | 11 | fdmi | ⊢ dom ·ℎ = ( ℂ × ℋ ) |
| 16 | 14 15 | sseqtrrdi | ⊢ ( 𝐻 ⊆ ℋ → ( ℂ × 𝐻 ) ⊆ dom ·ℎ ) |
| 17 | funimassov | ⊢ ( ( Fun ·ℎ ∧ ( ℂ × 𝐻 ) ⊆ dom ·ℎ ) → ( ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) | |
| 18 | 13 16 17 | sylancr | ⊢ ( 𝐻 ⊆ ℋ → ( ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ↔ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) |
| 19 | 10 18 | anbi12d | ⊢ ( 𝐻 ⊆ ℋ → ( ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ↔ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) → ( ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ↔ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
| 21 | 20 | pm5.32i | ⊢ ( ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ( +ℎ “ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ∧ ( ·ℎ “ ( ℂ × 𝐻 ) ) ⊆ 𝐻 ) ) ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |
| 22 | 1 21 | bitri | ⊢ ( 𝐻 ∈ Sℋ ↔ ( ( 𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻 ) ∧ ( ∀ 𝑥 ∈ 𝐻 ∀ 𝑦 ∈ 𝐻 ( 𝑥 +ℎ 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ℎ 𝑦 ) ∈ 𝐻 ) ) ) |