This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hi01 | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | ax-hvmul0 | ⊢ ( 0ℎ ∈ ℋ → ( 0 ·ℎ 0ℎ ) = 0ℎ ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 0 ·ℎ 0ℎ ) = 0ℎ |
| 4 | 3 | oveq1i | ⊢ ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0ℎ ·ih 𝐴 ) |
| 5 | 0cn | ⊢ 0 ∈ ℂ | |
| 6 | ax-his3 | ⊢ ( ( 0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) | |
| 7 | 5 1 6 | mp3an12 | ⊢ ( 𝐴 ∈ ℋ → ( ( 0 ·ℎ 0ℎ ) ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) |
| 8 | 4 7 | eqtr3id | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = ( 0 · ( 0ℎ ·ih 𝐴 ) ) ) |
| 9 | hicl | ⊢ ( ( 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 0ℎ ·ih 𝐴 ) ∈ ℂ ) | |
| 10 | 1 9 | mpan | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) ∈ ℂ ) |
| 11 | 10 | mul02d | ⊢ ( 𝐴 ∈ ℋ → ( 0 · ( 0ℎ ·ih 𝐴 ) ) = 0 ) |
| 12 | 8 11 | eqtrd | ⊢ ( 𝐴 ∈ ℋ → ( 0ℎ ·ih 𝐴 ) = 0 ) |