This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ocval | ⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ ) |
| 3 | raleq | ⊢ ( 𝑧 = 𝐻 → ( ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 ↔ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 ) ) | |
| 4 | 3 | rabbidv | ⊢ ( 𝑧 = 𝐻 → { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 5 | df-oc | ⊢ ⊥ = ( 𝑧 ∈ 𝒫 ℋ ↦ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝑧 ( 𝑥 ·ih 𝑦 ) = 0 } ) | |
| 6 | 1 | rabex | ⊢ { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ∈ V |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝐻 ∈ 𝒫 ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |
| 8 | 2 7 | sylbir | ⊢ ( 𝐻 ⊆ ℋ → ( ⊥ ‘ 𝐻 ) = { 𝑥 ∈ ℋ ∣ ∀ 𝑦 ∈ 𝐻 ( 𝑥 ·ih 𝑦 ) = 0 } ) |